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Abstract 

This paper presents a solution of the economic load dispatch (ELD) problem 

with security constraints of power systems, using an iterative technique based 

on the linear programming method, called �Successive Linear Programming� 

(SLP). The objective is to minimize the nonlinear function which is the total 

fuel cost of thermal generating units, while taking into account the security 

constraints (power generations, voltages and line flows). The proposed 

approach has been implemented on the Algerian 59-bus system. Simulation 

results obtained from the proposed method confirm the advantage of 

computation rapidity and solution accuracy. The comparison results prove the 

capability of the proposed method in real-time implementation for the 

economic load dispatch problem. 

Keywords 
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Introduction 

 

Economic load dispatch (ELD) is an important function in power system planning and 

operation. ELD solutions are found by solving the conventional load flow equations while at 
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the same time minimizing fuel costs. The resulting optimization problem has nonlinear 

constraints from the load flow nodal equations and simple bound constraints on the variables 

from the load bus voltage magnitudes. 

In 1962, Carpentier [1] introduced a generalized nonlinear programming formulation 

of the economic dispatch problem, including voltage and other operating constraints. This 

formulation was later named the Optimal Power Flow (OPF) problem. In 1968, Dommel and 

Tinney [2] introduced a reduced gradient steepest descent algorithm to solve the optimization 

problem. This algorithm has two drawbacks: slow convergence with the steepest descent 

direction, and ill conditioning resulting from the penalty functions associated with the 

inequality constraints. 

Today any problem that involves the determination of the instantaneous optimal 

steady state of an electric power system is an OPF problem. Traditionally, different solution 

approaches have been developed to solve the different classes of the OPF problem. These 

methods are nonlinear programming techniques with very high accuracy, but their execution 

time is very long and they can not be applied to real-time power system operations. 

Since the introduction of the sequential or successive programming techniques, it has become 

widely accepted that successive linear programming (SLP) algorithms can be effectively used 

to solve the ELD problem [3]. In SLP, the original problem is solved by successively 

approximating the original problem using Taylor series expansion at the current operating 

point and then moving in an optimal direction until the solution converges.     

 In this paper, a method based on an efficient successive linear programming technique 

is presented and tested on the Algerian 59-bus power system. Simulation results obtained 

from the proposed method confirm the advantage of computation rapidity and solution 

accuracy. These results show great promise for on-line application of the proposed approach 

for the ELD problem.       

 

 
ELD problem formulation 

 
The ELD problem is considered as a general minimization problem with constraints, 

and can be written in the following form: 

Minimize   f(x) (1) 
Subject to: g(x) = 0 (2) 
  h(x) ≤ 0  (3) 
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f(x) is the objective function, g(x) and h(x) are respectively the set of equality and inequality 

constraints. x is the vector of control and state variables. The control variables are generator 

active and reactive power outputs, bus voltages, shunt capacitors/reactors and transformers 

tap-setting. The state variables are voltage and angle of load buses. 

 

Objective function 

The objective function for the ELD reflects the costs associated with generating power 

in the system. The quadratic cost model is used. The objective function for the entire power 

system can then be written as the sum of the quadratic cost model for each generator: 

∑
=

++=
ng

i
giigiii PcPbaxf

1

2)(  [$/h]      (4) 

where ng is the number of thermal units, Pgi is the active power generation at unit i and ai, bi 

and ci are the cost coefficients of the ith generator.  

 

Equality constraints 

The equality constraints g(x) of the ELD problem are represented by the power 

balance constraint, where the total power generation must cover the total power demand and 

the power loss. This implies solving the load flow problem, which has equality constraints on 

active and reactive power at each bus as follows [4]: 

( )

( )

n

i gi di i j ij ij ij ij
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= − = θ + θ

= − = θ − θ

∑

∑
    (5) 

where: i=1,2,..., n and θij = θi - θj; Pi, Qi: injected active and reactive power at bus I; Pdi, Qdi: 

active and reactive power demand at bus i; Vi, θi: bus voltage magnitude and angle at bus i; 

Gij, Bij: conductance and susceptance of the (i,j) element in the admittance matrix. 

 

Inequality constraints 

The inequality constraints h(x) reflect the limits on physical devices in the power 

system as well as the limits created to ensure system security: 

• Upper and lower bounds on the active and reactive generations: 

gi min gi gi max gi min gi gi maxP P P , Q Q Q≤ ≤ ≤ ≤      (6) 
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• Upper and lower bounds on the tap ratio (t) and phase shifting (α) of variable 

transformers: 

ijmin ij ijmax ijmin ij ijmaxt t t ,≤ ≤ α ≤ α ≤ α      (7) 

• Upper limit on the active power flow (Pij) of line i-j:    

ij ijmaxP P≤          (8) 

where [5]: 
2

ij ij i ij i j i j ij i j i jP G V G V V cos( ) B V V sin( )= − + θ − θ + θ − θ     (9) 

• Upper and lower bounds on the bus voltage magnitude: 

i min i i maxV V V≤ ≤         (10) 

 

 

SLP Based Method for Solving the ELD Problem 

 

Because of the nonlinear nature of the electric power system, ELD problems are 

nonlinear programming problems. So, its resolution requires a nonlinear optimization 

technique like Newton's method [6]. Another widely used method is the linear programming 

(LP) technique [7, 8, 9]. The SLP method linearizes the objective function and constraints 

around the current operating point to set up and solve the problem using the LP technique. 

The control vector is updated and a new state is computed that is better than the previous one. 

The above procedure is successively repeated until the desired objective is achieved [10]. 

The ELD problem can be restated as [10]: 

Minimize 
• f(x,u) 
Subject to: 
• gi(x,u) = 0, i=1, ..., n 
• hj(x,u) ≤ 0, j=1,...,m 
• xmin ≤ x ≤ xmax 
• umin ≤ u ≤ umax 

(11) 

Where: 

• x and u are respectively the state and the control vector. 

• xmin and xmax are respectively the lower and the upper limit on the state vector. 

• umin and umax are respectively the lower and the upper limit on the control vector. 
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The problem (11) is linearized around the current operating point (xo, uo), and 

formulated as an LP problem: 

Minimize 

• 
t tf ff (x, u) . x . u

x u
∂ ∂   ∆ = ∆ + ∆   ∂ ∂   

 

Subject to: 

• 
t t

i i
i o o

g g
. x . u g (x , u ) 0

x u
∂ ∂   ∆ + ∆ + =   ∂ ∂   

, i=1, ..., n 

• 
t t

j j
j o o

h h
. x . u h (x , u ) 0

x u
∂ ∂   
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 (12) 

Where: 

• 




∂
∂
x

and 




∂
∂
u

 are the jacobean sub matrix. 

This linearization is only accurate for a small variation (±σ) of the increments ∆x and 

∆u, so: 

-σ ≤ ∆x ≤ σ, -σ ≤ ∆u ≤ σ       (13) 

However, in any case, the original bounds (xmin, umin) and (xmax, umax) should not be 

violated by the increments. Hence, we have the following new bounds on ∆x and ∆u [11]: 

min o max o

min o max o

max(x x , ) x min(x x , )
max(u u , ) u min(u u , )

− −σ ≤ ∆ ≤ − σ
− −σ ≤ ∆ ≤ − σ

  (14) 

 
The linearized problem given by (12) and (14) is an LP problem. 

In order to reduce the size of the LP problem, we can solve the linearized equality 

constraints (decoupled load flow equations), and express the relation of ∆x in term of ∆u. The 

expression of ∆x is then substituted in inequality constraints. Hence, the problem is expressed 

in term of control vector ∆u only. The solution of the LP problem gives the increment control 

vector ∆u, and added to the initial control uo provides a new updated vector u given by: 

u = uo + ∆u         (15) 

A new operating point (x , u) is calculated using the fast decoupled load flow 

algorithm [12]. The procedure is successively repeated until the desired objective achieved. 
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Development of the SLP Based Model 

 

Objective function 

The objective function is the cost function linearized around the current operating 

point (Pg
(k), V(k), θ(k)), given by: 

 ∆f(x,u) = [Jf
(k)][∆Pg]        (16) 

where: 

• [Jf
(k)] is the jacobean line vector of  f(x). 

• [∆Pg] is the increment column vector of active power generation.  

The jacobean elements of [Jf
(k)] are given by: 

(k) (k)
fi i i gi

gi

fJ b 2.c P , i 1,..., ng
P
∂

= = + =
∂

     (17) 

 

Equality constraints 

The equality constraints are based on the decoupled load flow equations [12]. The 

linearization around the control vector [Pg
(k)] gives: 

[ ] [ ] [ ](k) (k)
g g dP P P P B'    ∆ + − − = ⋅ ∆θ           (18) 

where: 

• [Pd] is the active power demand vector. 

• [P(k)] is the net injection power vector. 

• [∆θ] is the increment column vector of bus voltage angle. 

• [B'] is the susceptance matrix. 

From (18) we can write: 

[ ] [ ] [ ] [ ]( )1 1 (k) (k)
g g dB' . P B' . P P P− −     ∆θ = ∆ + − −          (19) 

 

Inequality constraints 

The inequality constraints reflect the limits on physical devices in the power system, 

to ensure system security. 

• Limits of active power generation and voltage magnitude: 

 



 

Leonardo Journal of Sciences 

ISSN 1583-0233 

 Issue 9, July-December 2006 

p. 73-86 
 

79 

(k ) (k )
gi min gi i gi gi max gi i

(k ) (k )
jmin j j j jmax j j

max(P P , ) P min(P P , ) , i 1,..., ng

max(V V , ) V min(V V , ) , j 1,..., n

− −σ ≤ ∆ ≤ − σ =

− −σ ≤ ∆ ≤ − σ =
   (20) 

It should be noted that the constraints on the reactive power at each generator are not 

included in the problem as stated above. These constraints will be taken care of by treating a 

generator bus at a Q limit as a load bus, in the load flow algorithm. 

• Limits of the line and transformer active power flow: 

[ ] [ ] [ ] [ ] [ ](k)
B B h hvP P J . J . Vθ = + ∆θ + ∆       (21) 

where: 

• [PB] is the vector of line active power. 

• [PB
(k)] is the vector of line active power flow at operating point k. 

[Jhθ] and [Jhν] are the jacobean sub matrix. 

Considering the physical weak coupling between P and V, and between Q and θ [12], 

we can approximate the equation (21) by: 

[ ] [ ] [ ](k)
B B hP P J .θ = + ∆θ         (22) 

The jacobean sub matrix [Jhθ] is given by: 

ijBm
h .mi ij i j i j ij i j i j

i i

ijBm
h .mj ij i j i j ij i j i j

j j

PP
J G V V sin( ) B V V cos( )

PP
J G V V sin( ) B V V cos( )

θ

θ

∂∂
= = = − θ − θ + θ − θ
∂θ ∂θ

∂∂
= = = θ − θ − θ − θ
∂θ ∂θ

  (23) 

The equality constraints can be eliminated by replacing (19) in (22): 

[ ] [ ] [ ] [ ] [ ] [ ]( )( )1 1(k) (k) (k)
B B h g h g dP P J . B' . P J . B' . P P P− −

θ θ      = + ∆ + − −         (24) 

The equation (24) is expressed in term of the increment [∆Pg] only. The inequality 

constraints can be written in the following form: 

[ ] [ ] [ ] [ ] [ ]( )( ) [ ]1 1 (k ) (k) (k )
h g h g d B B maxJ B ' P J B ' P P P P P 0− −
θ θ       ⋅ ⋅ ∆ + ⋅ ⋅ − − + − ≤         (25) 

[ ] [ ] [ ] [ ] [ ]( )( ) [ ]1 1 (k) (k) (k)
h g h g d B B maxJ B' P J B' P P P P P 0− −
θ θ       − ⋅ ⋅ ∆ − ⋅ ⋅ − − − − ≤         (26) 
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Summary of the SLP Model   

In summary, the SLP based model of ELD problem can be written in the following 

form:  

Minimize 
• (k)

f gf (x, u) J P   ∆ = ⋅ ∆    
Subject to: 
• [ ] [ ] [ ] [ ] [ ]( )( ) [ ]1 1 (k ) (k) (k )

h g h g d B B maxJ B ' P J B ' P P P P P 0− −
θ θ       ⋅ ⋅ ∆ + ⋅ ⋅ − − + − ≤         

• [ ] [ ] [ ] [ ] [ ]( )( ) [ ]1 1 (k) (k) (k)
h g h g d B B maxJ B' P J B' P P P P P 0− −
θ θ       − ⋅ ⋅ ∆ − ⋅ ⋅ − − − − ≤         

• (k) (k)
gi min gi i gi gi max gi imax(P P , ) P min(P P , ) , i 1,..., ng− −σ ≤ ∆ ≤ − σ =  

 (27) 

In this formulation, the variables are the elements of the control vector ∆Pg. 

 

 

The SLP ELD Algorithm 

 

The basic steps required in the SLP ELD algorithm are summarized as follows [10]: 

Step 1. Solve the load flow problem to obtain a feasible solution that satisfies the power 

balance equality constraint. 

Step 2. Linearize the objective function and inequality constraints around the load flow 

solution and formulate the LP problem (27). 

Step 3. Solve the LP problem and obtain optimal incremental control variables ∆Pg. 

Step 4. Update the control variables: Pg
(k+1) = Pg

(k) + ∆Pg. 

Step 5. Obtain the load flow solution with updated control variables. 

Step 6. If ∆Pg in step 3 are bellow user defined tolerance the solution converges. Otherwise, 

go to step 2.     

 

Application Example 

 

The SLP ELD algorithm (SLP_ELD) is coded in the MATLAB environment, and run 

using an AMD Athlon XP 1.8 GHz processor, with 256 MO of RAM. The test is performed on 

the Algerian 59-bus system [13, 14]. This network consists of 59 buses, 10 generators, 36 

loads and 83 branches. Some line flow limits are modified to show the effects of these limits 

on the results. 
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Table 1 shows the technical and economic parameters of the ten generators (it is 

noting that the generator no. 5 at bus no. 13 is not in service).   

In first case, the security constraints considered are the voltage magnitudes with active 

and reactive power of generators. In a second case, the security constraints consisting in the 

line and transformer active power flow are included.  

 
Table 1. Technical and economic parameters of the Algerian 59-bus system 

Bus Gen. Vmin 
(pu) 

Vmax 
(pu) 

Pgmin  
(MW) 

Pgmax 
(MW) 

Qgmin 
(Mvar) 

Qgmax 
(Mvar) 

a 
($/h) 

b 
($/MWh) 

c 
($/MW2h) 

1 G.1 0.9 1.1 8 72 -10 15 0 1.50 0.0085 
2 G.2 0.9 1.1 10 70 -35 45 0 2.50 0.0170 
3 G.3 0.9 1.1 30 510 -35 55 0 1.50 0.0085 
4 G4 0.9 1.1 20 400 -60 90 0 1.50 0.0085 
13 G.5 0.9 1.1 15 150 -35 48 0 2.50 0.0170 
27 G.6 0.9 1.1 10 100 -20 35 0 2.50 0.0170 
37 G.7 0.9 1.1 10 100 -20 35 0 2.00 0.0030 
41 G.8 0.9 1.1 15 140 -35 45 0 2.00 0.0030 
42 G.9 0.9 1.1 18 175 -35 55 0 2.00 0.0030 
53 G.10 0.9 1.1 30 450 -100 160 0 1.50 0.0085 

 
 

Case 1 

The results are shown on Table 2. The optimum active powers and reactive powers are 

in their secure limits. From Fig. 1 and 2, it can be observed that the security constraints   are 

satisfied for voltage magnitudes. No load bus is under its lower limit of 0.90 pu. The voltage 

angles are between a minimum value of -13.02° and a maximum value of 7.73°. 

Table 2. Results of  SLP_ELD without line flow constraints for the Algerian 59-bus system  
Generator Pg (MW) Qg (Mvar) 

G.1 37.801 3.859 
G.2 38.544 9.779 
G.3 134.890 -3.363 
G4 127.160 90.000 
G.5 0.000 -35.000 
G.6 27.332 28.255 
G.7 34.290 21.175 
G.8 49.850 45.000 
G.9 117.080 21.168 
G.10 137.230 89.440 

Total power generation 704.177 270.313 
Total power demand 684.10 311.60 
Total loss 20.077 -41.287 
Cost ($/h) 1777.13  
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Fig. 1. Voltage profile of the Algerian 59-bus system after optimization (case 1) 
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Fig. 2. Voltage angle of the Algerian 59-bus system after optimization (case 1) 

 
The evolution of the fuel cost function during the optimization process is shown in 

Fig. 3. It can be observed that the production cost starts from the initial value of 1943.70 $/h, 

and the change of the operating points is performed on optimal steps, adjusted successively by 

the LP algorithm. The optimal operating point has been obtained after 4.30 seconds and 30 

iterations with the optimal cost of 1777.13 $/h.   

The results of the proposed approach were compared to those reported using genetic 

algorithm (GA) [13] and ant colony optimization method (ACO) [14]. The comparison results 

are given in Table 3. From this table, it can be seen that SLP_ELD method give better results 

than other methods and the saving in fuel cost is about 337873.20 $/year to            

1401337.20 $/year. This demonstrates the potential and effectiveness of the proposed method 

to solve the nonlinear optimization problems. 
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It is important to note that the total active losses obtained with SLP_ELD are 

minimum compared with those obtained with other methods. The reduction of losses is about 

32.12 % to 49.80%. 
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Fig. 3. Evolution of fuel cost of the Algerian 59-bus system 

 
Table 3. Comparison results  

 GA [13] ACO  [14] SLP_ELD 
Pg1 (MW) 70.573 64.010 37.801 
Pg2 (MW) 56.574 22.750 38.544 
Pg3  (MW) 89.275 82.370 134.890 
Pg4 (MW) 78.224 46.210 127.160 
Pg5 (MW) 0.000 0.000 0.000 
Pg6 (MW) 57.930 47.050 27.332 
Pg7 (MW) 39.550 65.560 34.290 
Pg8 (MW) 46.400 39.550 49.850 
Pg9 (MW) 63.580 154.230 117.080 
Pg10 (MW) 211.580 202.360 137.230 

Cost ($/h) 1937.10 1815.70 1777.13 
Loss (MW) 29.58 39.98 20.077 
Execution time (sec.) 3.10 25.00 4.26 

 

From the comparison results, it is clear that the SLP_ELD gives global optimum with 

less computation time than ACO method, and a comparable time to GA method. 

 

Case 2 

In this case, the line active power flow constraints are included in the inequality 

constraints. The active power flow of the lines should not be exceed the limit of 100 MW. The 

simulation results are shown in Table 4. It can be observed that the fact to limit the line flow 

of transmission lines, the production cost has increased from 1777.13 $/h to 1788.06 $/h 
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(+0.61%). The line flow profile is shown in Fig. 4. From this figure, it is clear that there is no 

violation of the security constraints for line flows. It is also seen that the power flow of lines 

number 15 and 71 are enforced at their maximum limits (100 MW). The enforced line flows 

are shown in Table 5. This clearly indicates the trade-off between production cost and line 

flow constraints. The convergence has been achieved after 3.12 seconds with 12 iterations. 

 
Table 4. Results of SLP_ELD with line flow constraints for the Algerian 59-bus system (case 2) 

Generator Pg (MW) Qg (Mvar) 
G.1 27.421 3.673 
G.2 39.328 9.593 
G.3 133.770 -3.265 
G.4 131.130 90.000 
G.5 0.000 -35.000 
G.6 26.969 27.030 
G.7 33.410 22.002 
G.8 70.063 45.000 
G.9 100.010 20.401 
G.10 142.280 88.272 

Total power generation 704.381 267.706 
Total power demand 684.10 311.60 
Total loss 20.278 -43.894 
Cost ($/h) 1788.06  

 
Table 5. Enforced line flows (case 2) 

Line 
number 

Line flow without constraints 
(MW) 

Line flow with constraints 
(MW) 

Line flow limit 
(MW) 

15 100.73 100.00 100.00 
71 117.13 100.00 100.00 
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Fig. 3. Line flow profile of the Algerian 59-bus system 
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Conclusion 

 

In this paper, successive linear programming algorithm was applied to solve the 

economic load dispatch problem with security constraints. The approach was tested on the 

Algerian 59-bus 10-generator system. The SLP_ELD results were compared with those 

obtained from genetic algorithm method and ant colony optimization approach to validate the 

effectiveness of the proposed algorithm. The main security constraints considered are the 

generated active and reactive powers as well as the voltage magnitudes. The active power 

flow limit of transmission lines were incorporated later in the security constraints of the 

problem, and the overloaded lines were observed. Simulation results show that the 

consideration of line flow constraints can enforce some line flows at their maximum limits, 

leading to an increase of the total production cost. 

Considering the cases and comparative study presented in this paper, SLP_ELD algorithm 

appears to be very efficient in particular for its fast convergence to the global optimum and its 

interesting financial profit. This method is highly appropriate for on-line applications in 

power systems. 
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