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Abstract  

In this paper, the classical Direct Torque Control (DTC) of Induction Motor 

(IM) using an open loop pure integration suffers from the well-known 

problems of integration especially in the low speed operation range is 

detailed. To tackle this problem, the IM variables and parameters estimation is 

performed using a recursive non-linear observer known as EKF. This observer 

is used to estimate the stator currents, the rotor flux linkages, the rotor speed 

and the stator resistance. The main drawback of the EKF in this case is that 

the load dynamics has to be known which is not usually possible. Therefore, a 

new method based on the Model Reference Adaptive System (MRAS) is used 

to estimate the rotor speed. The two different nonlinear observers applied to 

sensorless DTC of IM, are discussed and compared to each other. The rotor 

speed estimation in DTC technique is affected by parameter variations 

especially the stator resistance due to temperature particularly at low speeds. 

Therefore, it is necessary to compensate this parameter variation in sensorless 

induction motor drives using an online adaptation of the control algorithm by 

the estimated stator resistance. A simulation work leads to the selected results 

to support the study findings. 
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Introduction 

 

In recent years significant advances have been made on the sensorless control of IM. 

One of the most well-known methods used for control of AC drives is the Direct Torque 

Control (DTC) developed by Takahashi in 1984 [1]. DTC of IMs is known to have a simple 

control structure with comparable performance to that of the field-oriented control (FOC) 

techniques developed by Blaschke in 1972 [2]. Unlike FOC methods, DTC techniques require 

utilization of hysteresis band comparators instead of flux and torque controllers [3-4]. To 

replace the coordinate transformations and pulse width modulation (PWM) signal generators 

of FOC, DTC uses look-up tables to select the switching procedure based on the inverter 

states [5]. 

Direct torque control (DTC) of induction motors (IMs) requires an accurate knowledge of 

the magnitude and angular position of the controlled flux. In DTC, the flux is conventionally 

obtained from the stator voltage model, using the measured stator voltages and currents. This 

method, utilizes open loop pure integration suffering from the well known problems of 

integration effects in digital systems, especially at low speeds operation range [6]. 

In the last decade, many researches have been carried on the design of sensorless control 

schemes of the IM. Most methods are basically based on the Model Reference Adaptive 

System schemes (MRAS) [7-8]. In [9] the authors used a reactive-power-based-reference 

model derived from (Garcia-Correda and Robentsen, 1999) in both motoring and generation 

modes but one of the disadvantages of this algorithm is its sensitivity to detuning in the stator 

and rotor inductances. The basic MRAS algorithm is very simple but its greatest drawback is 

the sensitivity to uncertainties in the motor parameters. An other method based on the 

Extended Kalman Filter (EKF) algorithm is used [10-12]. The EKF is a stochastic state 

observer where nonlinear equations are linearized in every sampling period. An interesting 

feature of the EKF is its ability to estimate simultaneously the states and the parameters of a 

dynamic process. This is generally useful for both the control and the diagnosis of the 

process. In [12] the authors used the EKF algorithm to simultaneously estimate variables and 

parameters of the IM in healthy case and under different IM faults. [7-13] used the 

Luenberger Observer for state estimation of IM. The Extended Luenberger Observer (ELO) is 

a deterministic observer which also linearizes the equations in every sampling period. There is 

other type of methods for state estimation that is based on the intelligent techniques is used in 
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the recent years by many authors [14-15-16]. Fuzzy logic and neural networks has been a 

subject of growing interest in recent years. Neural network and fuzzy logic algorithms are 

quite heavy for basic microprocessors. In addition, several papers provide sensorless control 

of IM that are based on the variable structure technique [17-18] and the High Gain Observer 

(HGO) [19] that is a powerful observer that can estimate simultaneously variables and 

parameters of a large class of nonlinear systems and doesn’t require a high performance 

processor for real time implementation. 

DTC improves the induction machine controller dynamic performance and reduces the 

influence of the parameter variation during the operation [20]. 

The pure integration method used in the classical DTC of IMs suffers from the well 

known problems of integration especially at low speed operation range is replaced in this 

work by the EKF. This observer is used to estimate the stator currents, the rotor flux linkages, 

the rotor speed and the stator resistance. The speed estimation is affected by parameter 

variations especially the stator resistance due to temperature rises particularly at low speeds 

[21]. Therefore, it is adequate to compensate this parameter variation in sensorless induction 

motor drives using an online adaptation of the control scheme by the estimated stator 

resistance using the EKF. The major drawback of the speed estimation using the EKF is the 

condition that the load dynamics is to be known. To overcome this problem, a novel speed 

estimator is used based on the MRAS strategy. The two different nonlinear observers applied 

to sensorless DTC of IM, are discussed and compared to each other in the same operation 

conditions.  

 

 

Direct Torque Control Principle 

 

Induction Motor Model 

The IM model expressed in the stationary reference frame can be written in space 

vector notation as: 

Voltage Equations: 

= + s
s s s

dv R i
dt
ψ  

(2.1a)
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0= = + −r
r r r

dv R i j
dt r r
ψ ωψ  

(2.1b)

Flux Equations: 

= +s s s m rL i L iψ  (2.2a) 

= +r r r mL i L isψ  (2.2b)

Mechanical Equation: 

+ = −r
v r e l

dJ f T
dt

Tω ω  
(2.3a) 

( )3
2

= ×e sT p i j sψ  
(2.3b)

Substituting (2.2a) and (2.2b) into (2.3b), yields 

( )3
2

= ×m
e s

s r

LT p j
L L rψ ψ

σ
 

(2.4) 

where ,s rv v  are the stator and rotor voltages respectively, ,s ri i  are the stator and rotor 

currents, ,s rψ ψ  are the stator and rotor fluxes, ωr is the rotor speed, Rs, Rr are the stator and 

rotor resistances, Ls, Lr  are the stator and rotor self inductances, Lm is the mutual inductance, 

σ is the leakage coefficient with , p is the pole-pair number, J is the motor 

inertia and fv is the viscous friction coefficient. 

21 /(= − m s rL L Lσ )

Using the α-β coordinate system and separating the machine variables into their real 

and imaginary parts, the time-varying state space model of the induction motor is obtained 

from (2.1a) to (2.3b) and is given by equations (2.5a) and (2.5b): 

( )
2

1 1 0

1
10

1 0
0 1

3 0 0
2

⎡ ⎤− − + ⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ − + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ = + ⎢⎢ ⎥⎢ ⎥− +⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥⎢ ⎥ − + ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥− − −⎢ ⎥ ⎣ ⎦

⎣ ⎦
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s r
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r s s ss
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ψ
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⎥  

(2.5a)
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(2.5b)

where 1 ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
s r

s r

R R
L L

γ
σ

 

 

 

Flux and Torque Estimation 

 

In the conventional DTC scheme, the stator flux is gotten from (2.6), which is derived 

from (2.1a) using only the measured stator voltages and currents.  

( )ˆ = −∫s s s sv R i dtψ  (2.6) 

Using equation (2.1a) the stator flux expression is: 

= −s
s s s

d V R i
dt
ψ  

(2.7) 

If  0≈s sR i

=s
s

d V
dt
ψ  

(2.8) 

The approximation of the voltage drop in the stator resistance is realistic, excepting at 

low speeds rang when the (Rs.is) term must be considered.  

( ) ( ) .+ ∆ = + ∆s st t t Vs tψ ψ  (2.9) 

If a sequence of null voltage is applied, we note that the variation of the stator flux 

module is always negative and proportional to voltage drop (Rs.is), as shown by equation 

(2.10). 

.= −s
s s

d R i
dt
ψ  

(2.10)

At average and high speed, the term (Rs.is) can be neglected and therefore the stator 

flux variation is null for a null voltage vector. 
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0=sd
dt
ψ  

(2.11)

The electromagnetic torque is calculated by (2.12), which is derived from (2.3b). 

( )3ˆ ˆ ˆ
2

= −e s s sT p i i sβ α α βψ ψ  
(2.12)

The expression of the electromagnetic torque as function of the stator flux is the 

following: 
*.Im .⎡ ⎤= ⎣ ⎦e T s rT K ψ ψ  (2.13)

KT is a constant depending on the motor parameters. 

( )
3

2
= m

T
r s

pLK
L Lσ

 

Using the complex notation of the stator flux and the rotor fluxes we get: 

[ ], .= = si
s s s s e θψ ψ θ ψ  and [ ], .= = ri

r r r r e θψ ψ θ ψ  (2.14)

The electromagnetic torque can be expressed with the following manner: 

( ). . sin=e T s rT K ψ ψ ρ  (2.15)

where (= − )s rρ θ θ  is the angle between the stator and rotor fluxes vectors. 

Knowing that the stator flux is maintained in the hysteresis band, one can suppose that 

it follows its reference " and the expression (2.15) becomes: 

( )*. . sin=e T s rT K ψ ψ ρ    (2.16)

 

 

Control algorithm 

 

DTC requires accurate knowledge of the amplitude and angular position of the 

controlled flux (with respect to the stationary stator axis) in addition to the angular velocity 

for the torque control purpose [22-23]. 

2 2ˆ ˆ ˆ= +s s sα βψ ψ ψ  (2.17a) 
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1 ˆˆ tan
ˆ

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

s

s

β
ψ

α

ψ
θ

ψ
 

(2.17b) 
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Figure 1. Sectors for stator flux plane. Thick vectors in each sector are vectors used to increase or 

decrease flux in counter clock wise direction 

 

The voltage source inverter can be modeled as shown in figure 1, where Sa, Sb, Sc are 

the switching states. Eight output voltage vectors V0 to V7 {000, 100, 110, 010, 011, 001, 101, 

111} are obtained for different switch combinations. Hence, V0 and V7 are zero voltage 

vectors. From the inverter switching we get: 

( )2
3

= − −s a b c
Vv S Sα S  

(2.18a) 

( )
3

= −s b c
Vv Sβ S

|

 
(2.18b) 

Table 1 presents the output voltage vectors which are selected to change the torque 

angle. This is done based on the instantaneous torque requirement, ensuring the error between 

ˆ| sψ  and *| |sψ  to be within a tolerance band δψ. 

The objective of DTC is to maintain the electromagnetic torque and the stator flux 

module within a defined band of tolerance, i.e. the hysteresis band used in this work are δTe = 

0.01 and δψ = 0.01. 
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The switching pattern of the VSI is selected based on the output of a pair of hysteresis 

as variable structure controllers for both torque and stator flux. In order to adjust the 

electromagnetic torque and the stator flux linkage, the Takahashi DTC algorithm chooses the 

stator voltage space vector that produces the desired change [24-25]: 

 If ∆ψs is under the hysteresis band, the DTC algorithm chooses the voltage vector that 

increases the stator flux. 

 If ∆ψs is over the hysteresis band, it chooses the voltage vector that decreases the stator 

flux. 

 When ∆ψs is inside the hysteresis band, the null voltage vectors are chosen.  

 

Table 1. The classic switching table 

  Sectors (Si : i =1 to 6) 
τψs τTe S1 S2 S3 S4 S5 S6 

1 V2 V3 V4 V5 V6 V1 
0 V7 V0 V7 V0 V7 V0 1 
-1 V6 V1 V2 V3 V4 V5 
1 V3 V4 V5 V6 V1 V2 
0 V0 V7 V0 V7 V0 V7 0 
-1 V5 V6 V1 V2 V3 V4 

 

 

Where, τψs: the output of the flux hysteresis and τTe: the output of the torque hysteresis  

To simplify the switching table, we supposed that the output of the torque regulator 

takes only two states, as that of the flux shown in table 2. This means saying that the 

condition of preservation of the torque is rarely used (When the torque reference is inside the 

hysteresis band), which is realistic especially when we work in discret case. 

 

Table 2. The modified switching table 

 Sectors (Si : i =1 to 6) 
τψs τTe S1 S2 S3 S4 S5 S6 

1 V2 V3 V4 V5 V6 V1 1 0 V6 V1 V2 V3 V4 V5 
1 V3 V4 V5 V6 V1 V2 0 
0 V5 V6 V1 V2 V3 V4 
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Extended Kalman Filter 

 

The Kalman filter KF is a special kind of observer, which provides optimal filtering of 

noises in measurement and inside the system if the covariance matrices of these noises are 

known. The process and the measurement noises are both assumed to be Gaussian with a zero 

mean. The elements of their covariance matrices (Q and R) serve as design parameters for the 

convergence of the algorithm [12]. 

For nonlinear problems, the KF is not strictly applicable since linearity plays an 

important role in its derivation and performance as an optimal filter. The EKF attempts to 

overcome this difficulty by using a linearized approximation where the linearization is 

performed about the current state estimate [15]. 

In addition, the KF has the ability to produce estimates of states that are not 

measurable. This feature is particularly important for estimation problems associated with the 

squirrel cage IM as the rotor quantities are not directly accessible.  

If a simultaneous estimate of the machine parameter, let say stator resistance, is 

needed then it is defined as an auxiliary state variable. A new state vector containing the 

original states and the parameter is then established. In this case, the nonlinearity of the 

system increases. Therefore, the Extended Kalman Filter (EKF) is more convenient suitable 

than the KF. 

Let us now see the recursive form of the EKF as in [12-15]. 

Prediction: 

ˆ ˆ(( 1) / ( ). ( / ) ( ). ( )+ = +x k k F k x k k G k u k  (3.1)

(( 1) / ) ( ). ( / ). ( )+ = +TP k k F k P k k F k Q  (3.2)

Correction: 

[ ]ˆ ˆ ˆ(( 1) /( 1)) (( 1) / ) ( 1) ( 1) ( 1). (( 1) / )+ + = + + + + − + +x k k x k k K k y k H k x k k  (3.3) 

1
( 1) (( 1) / ). ( 1). ( ). (( 1) / ). ( )

−
⎡ ⎤+ = + + + +⎣ ⎦

TK k P k k H k H k P k k H k RT  (3.4) 

(( 1) /( 1)) (( 1) / ) ( 1). ( 1). (( 1) / )+ + = + − + + +P k k P k k K k H k P k k  (3.5) 

where the estimation covariance error is: 

{ }ˆ ˆ( / ) ( ( ) ( )) ( ( ) ( ))= − − TP k k E x k x k x k x k  (3.6) 
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K is the Kalman gain matrix. ((k+1)/k) denotes a prediction at time (k+1) based on data up to 

and including k. (3.2) and (3.5) forms the well-known Riccati equation. 

 

 

Figure 2. The general diagram of the Extended Kalman Filter 

 

Equations (2.5a)-(2.5b) define a continuous model, but as estimation is to be 

implemented on a digital processor, the IM continuous model must be written in a discrete 

form. By applying the Euler formula a discrete time-varying non-linear model is obtained: 

.= ≈ +AT
dA e I AT  (3.7) 

0

. .= ≈∫
T

A
dB e B d B Tξ ξ  

(3.8) 

The discrete time varying nonlinear stochastic model of the induction motor has the 

following form: 

( 1) ( ) ( ) ( ) ( )+ = +x k F k x k G k u k  (3.9) 

( ) ( ). ( )=y k H k x k  (3.10)

where x(k), u(k) and y(k) are respectively the state vector, the input vector and the output 

vector which are defined as fellow: 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎡ ⎤= ⎣ ⎦
T

s s s s r sx k i k i k k k k R kα β α βψ ψ ω  (3.11)

( ) ( ) ( ) ( )⎡ ⎤= ⎣ ⎦
T

s s lu k v k v k T kα β , ( ) ( ) ( )⎡ ⎤= ⎣ ⎦
T

s sy k i k i kα β  (3.12)

The process and the measurement noise vectors are random variables and 

characterized by: 
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{ } { }( ) 0, ( ) ( ) ; 0= =T
kjE w k E w k w j Q Qδ ≥  (3.13)

{ } { }( ) 0, ( ) ( ) ; 0= =T
kjE v k E v k v j R Rδ ≥  (3.14)

The initial state x(0) is characterized by: 

{ } { }0 0 0(0) , ( (0) ) ( (0) )= − − TE x x E x x x x P0=

dt

 (3.15)

 

 

MRAS Based Rotor Speed Estimation 

 

The MRAS technique is used in sensorless IM drives, at a first time, by Schauder [26]. 

Since this, it has been a topic of many publications [8-9]. The MRAS is important since it 

leads to relatively easy to implement system with high speed of adaptation for a wide range of 

applications. The basic scheme of the parallel MRAS configuration is given in figure 3. The 

scheme consists of two models; reference and adjustable ones and an adaptation mechanism. 

The block “reference model” represents the actual system having unknown parameter values. 

The block “adjustable model” has the same structure of the reference one, but with adjustable 

parameters instead of the unknown ones. The block “adaptation mechanism” estimates the 

unknown parameter using the error between the reference and the adjustable models and 

updates the adjustable model with the estimated parameter until satisfactory performance is 

achieved. 

Using a proportional plus integral (PI) observer, the IM speed observer equation is 

given by (4.1) [27]: 

( ) ( )
0

ˆ ˆ ˆ ˆ ˆ= − + −∫
t

r P r r I r rK Kβ α α β β α α βω ε ψ ε ψ ε ψ ε ψ  (4.1) 

This expression depends on the unknown rotor flux components (ψrα and ψrβ). 

Therefore, these two variables are added to the state vector and estimated using the EKF. 

Stability of this observer and convergence of estimation have been proven in several 

papers [7-9]. 
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Figure 3. Schema of the rotor speed estimation based on MRAS structure 

 

 
Figure 4. Direct Torque Control bloc diagram of a sensorless IM drives. 

 

 

Simulation Results  

The efficiency of the proposed control scheme has been verified using 

MATLAB/SIMULINK software package. Motor parameters used in simulations are given in 

Table 3. 
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Figure 5. The electromagnetic and load torque. 
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Figure 6. The stator flux magnitude 

 

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

ψsα
 (Wb)

ψsβ
 (Wb)

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

ψsα
 (Wb)

ψsβ
 (Wb)

(a) (b)  
Figure 7. Stator flux linkage trajectories during starting and steady state, (a) with 

compensation of the stator resistance variation effect, (b) without compensation of the stator 
resistance variation effect. 
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Figure 8. The actual and estimated stator currents 
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Figure 9. The actual and estimated stator flux linkages 
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Figure 10. The actual and estimated speed (a) using the EKF, (b) using the MRAS 
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Figure 11. The actual and estimated stator resistance, (a) Abrupt variation, (b) Smooth 
variation 
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Table 3. Motor Data 
Rated power 3 kW 
Rated speed 1440 rpm 
frequency 50 Hz 
p 2 
Rs 2.3 Ω  
Rr 1.55 Ω  
Ls = Lr 0.261 H 
M 0.249 H 
J 0.0076 kg.m2 

 

The ripple affecting both electromagnetic torque response Fig. 5 and flux response 

Fig. 6 is due to the use of hysteresis controllers. 

In Fig. 7 (b) it can be seen the effect of the stator resistance variation due to 

temperature. After 0.6 s and due to the stator resistance increase, the stator flux linkage 

trajectory is decreased. By contrast, Fig. 7 (a) shows that the stator flux trajectory is kept 

constant in presence of stator resistance variation and this is due to the online adaptation of 

the control algorithm by the observed stator resistance using the EKF. 

The real and estimated state variables using the EKF are given respectively in Fig. 8 to 

Fig. 11. It is clearly shown that the estimated variables are in close agreement with the real 

ones. 
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Figure 12. The actual and estimated speed at low speeds range, (a) using the EKF, (b) using 

the MRAS 
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Figure 13. Rotor speed estimation errors, (a) using the EKF, (b) using the MRAS 
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Figure 14. Evolution of the stator flux position 
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Figure 15. Sectors succession during the IM control using the DTC strategy 
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Figure 16. The electromagnetic and load torque for varied targets 

 
 

Discussions 

 

 Parameter variation effects 

In order to test the sensitivity of the DTC of the IM to the parameter variations, the 

nominal and the estimated stator resistance are initially set equal, and then at 0.6s the stator 

resistance is changed to 1.5 times the nominal resistance. 

The results are shown in Fig. 11 (a) and (b). Fig. 11 (a) shows the tracking of the stator 

resistance (for a smooth change). Fig. 11 (b) also shows the tracking of the stator resistance 

variations. In this last case, the stator resistance value is changed abruptly: stepped-up by 50 

% of its initial value. It is clearly shown that the estimated stator resistance converges after 

less than 1 ms to the nominal value with a tiny error. This result demonstrates that even if the 

stator resistance changes abruptly, the EKF still gives a good estimate of this major 

parameter.   

 

 Measurement noises effects 

To highlight the robustness of the observer, white Gaussian noises with variances of 

10-2 are simultaneously added to the measured stator voltages and currents. Fig. 9 shows the 

real and estimated α and β components of the stator fluxes. The real and estimated rotor 

speeds are given in Fig. 10 (a) using the EKF and Fig. 10 (b) using MRAS. It clearly appears 

that the EKF and the MRAS have the property of noises rejection. The on line estimation of 

the IM states and parameters is tested by many researchers and is proved to give satisfactory 

results. The most used techniques to estimate these states and parameters are pointed to the 

EKF. 
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According to the KF theory, R (measurement error covariance matrix) and Q (process 

error covariance matrix) have to be obtained by considering the stochastic properties of the 

corresponding noises [12]. However, since these are usually not known, in most cases, the 

covariance matrix elements are used as weighting factors or tuning parameters. In this study, 

tuning the initial values of P and Q is done by trial and error to achieve a rapid initial 

convergence and the desired transient and steady state behavior of the estimated states and 

parameters [6]. 

 

 Steady state and transient behaviors 

To compare the performance of the two speed observers EKF and MRAS, it is right to 

study their behavior at start-up and at steady state regions. Fig. 10 (a) and (b) show 

respectively, the actual and estimated speeds at starting using the EKF and the MRAS 

technique. The speed estimation error given by the two observers is negligible, but the error 

with the MRAS is slightly higher. The estimated rotor speed using the EKF and the MRAS 

are in close agreement with the real ones. 

 

 Operation at low speed region 

Since, the MRAS speed estimation used here is based on the proportional plus integral 

(PI) observer, the well-known pure integration problem at low speed region is encountered in 

this work. It is concluded that state observation performance of the EKF is quite satisfactory 

where over all speed region and slightly better than MRAS.  

For the investigation of the drive behavior at both low and zero speeds, the reference 

speed is initially set to 0 rad/s, at 0.4 s it is changed to 20 rad/s, and then at 1.5 s the set point 

is changed to -20 rad/s. Fig. 12 (a) and (b) show that, the estimated and real speeds are in 

close agreement with each other in both the forward and reverse directions. The evolution of 

the stator flux position and the sectors succession during the IM DTC control at low speeds 

region and under various load conditions are given respectively by Fig. 14 and Fig. 15. 

 

 Operation under various load conditions  

Unlike the EKF which uses the mechanical equation and requires an accurate 

knowledge of the load torque for speed estimation, the MRAS observer is derived using the 
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difference between the outputs of two dynamic models, the reference and the adjustable 

models and the error vector is driven to zero trough an adaptive law. 

The load torque impact on the speed estimation is studied under different level of load 

variations. The reference torque is initially set to 0 Nm, at 0.6 s it is changed to 5 Nm, to the 

rated value at 1 s and at 1.4 s it is kept again to 0 Nm. Then at 1.6 s the set point is changed to 

-10 Nm. Fig. 16 shows simultaneously the reference and the electromagnetic torques. Fig. 12 

(a) and (b) prove the robustness of the EKF and MRAS to the load torque variations. 

 

 

Conclusions 

 

In this paper, the well-known classical DTC of IM is detailed and modified to improve 

its performance, and a comparison between two nonlinear observers, the EKF and the MRAS 

is presented. 

The two observers are studied and compared in the same operating conditions, in order 

to extract their advantages and drawbacks. Simulation results show that both observers have 

the property of noise rejection and they are robust against parameters and load variations. 

The state observation performance of the EKF is quite satisfactory and slightly better. But, 

this type of observer requires an accurate knowledge of the load torque and needs more 

computational time due to heavy matrices manipulations. By contrast, the MRAS strategy 

doesn’t need the load torque to be known and it is much easier to implement.   

In a future fellow up work, the proposed scheme is to be implemented on a DSP based 

on the 16 bits floating point arithmetic Texas Instrument TMS320C31 processor. 
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