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Abstract 

This paper presents an efficient and reliable evolutionary-based approach to 

solve the optimal power flow (OPF) combinatorial problem. The proposed 

approach employs Ant Colony Optimization (ACO) algorithm for optimal 

settings of OPF combinatorial problem control variables. Incorporation of 

ACO as a derivative-free optimization technique in solving OPF problem 

significantly relieves the assumptions imposed on the optimized objective 

functions. The proposed approach has been examined and tested on the 

standard IEEE 57-bus test System with different objectives that reflect fuel 

cost minimization, voltage profile improvement, and voltage stability 

enhancement. The proposed approach results have been compared to those 

that reported in the literature recently. The results are promising and show the 

effectiveness and robustness of the proposed approach. 
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Introduction 

 

In the past two decades, the problem of optimal power flow (OPF) has received much 

attention. It is of current interest of many utilities and it has been marked as one of the most 

operational needs. The OPF problem solution aims to optimize a selected objective function 

such as fuel cost via optimal adjustment of the power System control variables, while at the 

same time satisfying various equality and inequality constraints. The equality constraints are 

the power flow equations, while the inequality constraints are the limits on control variables 

and the operating limits of power system dependent variables. The problem control variables 

include the generator real powers, the generator bus voltages, the transformer tap settings, and 

the reactive power of switchable VAR sources, while the problem dependent variables 

include the load bus voltages, the generator reactive powers, and the line flows. Generally, the 

OPF problem is a large-scale highly constrained nonlinear optimization problem. 

Useful OPF is limited by the high dimensionality of power systems and the 

incomplete domain dependent knowledge of power system engineers. The first limitation is 

addressed by numerical optimization procedures based on successive linearization using the 

first and the second derivatives of objective functions and their constraints as the search 

directions or by linear programming solutions to imprecise models [1, 2]. The advantages of 

such methods are in their mathematical underpinnings, but disadvantages exist also in the 

sensitivity to problem formulation, algorithm selection and usually converge to local minima 

[3]. The second limitation, incomplete domain knowledge, precludes also the reliable use of 

expert systems where rule completeness is not possible. In the evolutionary and adaptive 

algorithms one of the most recent is the Ant Colony Optimization (ACO) computational 

paradigm introduced by Marco Dorigo in his Ph.D. thesis in 1992 [4], and expanded it in his 

further work, as summarized in [5, 6, 7]. 

A new powerful approach of ACO is accessible to these optimization problems made 

possible by the increasing availability of high performance computers at relatively low costs. 

As the name suggests, these algorithms have been inspired in the real ant colonies behavior. 

When searching for food, ants initially explore the area surrounding their nest in a random 

manner. As soon as an ant finds a food source, it evaluates quantity and quality of the food 

and carries some of the found food to the nest. During the return trip, the ant deposits a 

chemical pheromone trail on the ground. The quantity of pheromone deposited, which may 
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depend on the quantity and quality of the food, will guide other ants to the food source. The 

indirect communication between the ants via the pheromone trails allows them to find shortest 

paths between their nest and food sources. This functionality of real ant colonies is exploited 

in artificial ant colonies in order to solve global optimization searching problems when the 

closed-form optimization technique cannot be applied. 

Characters of the ACO algorithms use the parameters, probabilistic model that is used 

to generate solutions to the problem under consideration. The probabilistic model is called the 

pheromone model. The pheromone model consists of a set of model parameters, which are 

called the pheromone trail parameters. The pheromone trail parameters have values, called 

pheromone values. At run-time, ACO algorithms try to update the pheromone values in such a 

way that the probability to generate high-quality solutions increases over time. The 

pheromone values are updated using previously generated solutions. The update aims to 

concentrate the search in regions of the search space containing high-quality solutions. In 

particular, the reinforcement of solution components depending on the solution quality is an 

important ingredient of ACO algorithms. It implicitly assumes that good solutions consist of 

good solution components. To learn which components contribute to good solutions can help 

to assemble them into better solutions. 

ACO methods have been successfully applied to diverse combinatorial optimization 

problems including travelling salesman [8, 9], quadratic assignment [10, 11], vehicle routing 

[12, 13, 14], telecommunication networks [15], graph colouring [16], constraint satisfaction 

[17], Hamiltonian graphs [18], and scheduling [19, 20, 21]. 

This paper presents the application of the ant colony optimization algorithms in the 

Optimal Power Flow (OPF) combinatorial problem applied on IEEE 57-bus Electrical 

Network. The algorithm was developed MATLAB environment programming (R2008a, 

v7.6). 

 

 

Problem Formulation 

 

Optimal Power Flow is defined as the process of allocating generation levels to the 

thermal generating units in service within the power system, so that the system load is 

supplied entirely and most economically [30, 31]. The objective of the OPF problem is to 



Ant Colony Optimization Applied on Combinatorial Problem for Optimal Power Flow Solution  

Brahim GASBAOUI and Boumediène ALLAOUA 
 

4 

calculate, for a single period of time, the output power of every generating unit so that all 

demands are satisfied at minimum cost, while satisfying different technical constraints of the 

network and the generators. The problem can be modeled by a system which consists of ng 

generating units connected to a single bus-bar serving an electrical load Pd. The input to each 

unit shown as Fi, represents the generation cost of the unit. The output of each unit Pgi is the 

electrical power generated by that particular unit. The total cost of the system is the sum of 

the costs of each of the individual units. 

The essential constraint on the operation is that the sum of the output powers must 

equal the load demand. The standard OPF problem can be written in the following form: 

  

{ }









≥

=

0)x(g:and

0)x(h:toSubject

)x(Fmin

 (1) 

where F(x) the objective function, h(x) represents the equality constraints, g(x) 

represents the inequality constraints and x is the vector of the control variables, that is those 

which can be varied by a control center operator (generated active and reactive powers, 

generation bus voltage magnitudes, transformers). 

 

Objective Function 

Generally, the OPF problem can be expressed as minimizing the cost of production of 

the real power which is given by objective function FT 

where, 

  ∑
=

=
ng

1i

iiT )Pg(FF  (2) 

 

The fuel cost function or input-output characteristic of the generator may be obtained 

from design calculations or from heat rate tests. Many different formats are used to represent 

this characteristic. The data obtained from heat rate tests or from the plant design engineers 

may be fitted by a polynomial curve. It is usual that, quadratic characteristic is fit to these 

data. A series of straight-line segments may also be used to represent the input-output 

characteristic [30]. The fuel cost function of a generator that usually used in power system 

operation and control problem is represented with a second-order polynomial. 
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Where ng is the number of generation including the slack bus. Pg is the generated 

active power at bus i. ai - bi  and ci are the unit costs curve for ith generator. 

The standard OPF problem can be described mathematically as an objective with two 

constraints as: 

  ng,1i,PPdPg
ng

1i

Li =+=∑
=

 (4) 

  ng,1i,PgPgPg max

ii

min

i =≤≤  (5) 

where: 

iPg : Real power output of i-th generator (MW); 

FT: Total Operating cost ($ /h); 

)Pg(F ii : Operating cost of unit i ($ /h); 

Pd: Total demand (MW); 

PL: Transmission losses (MW); 

max

i

min

i Pg;Pg : Operating power limits of unit i (MW); 

ng: Total number of units in service. 

 

 

Optimal Power Flow Using Ant Colony Optimization  

 

Ant colony optimization method description 

In the ant colony optimization (ACO), a colony of artificial ants cooperates in finding 

good solutions to difficult optimization problems. Cooperation is a key design component of 

ACO algorithms: The choice is to allocate the computational resources to a set of relatively 

simple agents (artificial ants) that communicate indirectly by stigmergy. Good solutions are an 

emergent property of the agent’s cooperative interaction. 

Artificial ants have a double nature. On the one hand, they are an abstraction of those 

behavioral traits of real ants which seemed to be at the heart of the shortest path finding 

behavior observed in real ant colonies. On the other hand, they have been enriched with some 

capabilities which do not find a natural counterpart. In fact, we want ant colony optimization to 

be an engineering approach to the design and implementation of software Systems for the 

solution of difficult optimization problems. It is therefore reasonable to give artificial ants some 
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capabilities that, although not corresponding to any capacity of their real ant’s counterparts, 

make them more effective and efficient. 

Each ant generates a complete tour by choosing the cities according to a probabilistic 

state rule. Mathematically, the probability with which ant k in city r chooses to move to the city 

s is [22]: 
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where τ is the pheromone, η is the visibility which is the inverse of the distance δ(r,s), 

Jk(r) is the set of cities that remain to be visited by ant k positioned on city r , α and β are two 

coefficients which make the pheromone information or the visibility information more 

important with respect to one another and the parameter γ > 0 determines the relative 

influence of pheromone values corresponding to earlier decisions, preceding places in the 

permutation. 

A value γ = l results in unweighted summation evaluation, every τir , i ≤  r is given the 

same influence. A value γ < 1 (γ > 1) gives pheromone values corresponding to earlier 

decisions less (respectively more) influence. 

The best solutions found so far and in the current generation are used to update the 

pheromone information. However, before that, some portion of pheromone is evaporated 

according to: 

  rsrs )1( τρ−=τ  (7) 

Where ρ is the evaporation rate with 0 ≤  ρ < 1 and (1-ρ) is the trail persistence. The 

reason for this is that old pheromone should not have too strong an influence on the future. 

Let τrs(t) be the intensity of trail on edge (r,s) at time t. Each ant at time t chooses the 

next city, where it will be at time t+1. Therefore, after each cycle, after each ant has 

determined a tour, the pheromone trail is updated using the founded solutions according to the 

following formula: 

  ∑
=

τ∆+τ⋅ρ=+τ
m

1K

)k(

rsrsrs )t()nt(  (8) 

where )k(

rsτ∆  is the contribution of the ant k to the pheromone trial between cities r and s. 

Usually, 
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where Q0 is a constant related to the amount of pheromone laid by ants and Lk is the tour 

length of the k-th ant. 

The process is then iterated and the algorithm runs until some stopping criterion is 

met, a certain number of generations have been done or the average quality of the solution 

found by the ants of a generation has not changed for several generations. 

 

ACO Applied on Optimal Power Flow 

Our objective is to minimize the objective function of the OPF defined by (2), using 

into account the equality constraint (4), and the inequality constraint (5). The cost function 

implemented in ACO is defined as: 

 ∑
=

++=
ng

1i

2

iiiiiii )PgcPgba()Pg(F ; ng,1i;PgPgPg max

ii

min

i =≤≤  (10) 

The search of the optimal parameters set is performed using into account a part of the 

equality constraints (4) which present the active power transmission losses (PL) to be deal 

with in feasible region. 

The search of the optimal control vector is performed which present the system 

transmission losses (PL). These losses can be approximated in terms of B-coefficients as [23]: 
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These losses are represented as a penalty vector given by: 

  
j

ng

1i

ng

1j

ijiL PgBPgP ⋅⋅=∑∑
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 (12) 

The transmission loss of a power System PL can be calculated by the B-Coefficients 

method [24] and given by: 

  
000

TT

L BBPgPgBPgP +⋅+⋅⋅=  (13) 

where Pg is a ng-dimensional column vector of the generator power of the units, Pg
T is the 

associate matrix of Pg, B is an ng×ng coefficients matrix, B0 is an ng-dimensional coefficient 

column vector and B00 is a coefficient. 

Our objective is to search (Pg) set in their admissible limits to achieve the 

optimization problem of OPF. At initialization phase, (Pg) is selected randomly 

between min

iPg and max

iPg . 
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The use of penalty functions in many OPF solutions techniques to handle inequality 

constraints can lead to convergence problem due to the distortion of the solution surface. In 

this method only the active power of generators are used in the cost function. And the 

inequality constraints are scheduled in the load flow process. Because the essence of this idea 

is that the constraints are partitioned in two types of constraints, active constraints are checked 

using the ACO-OPF procedure and the reactive constraints are updating using an efficient 

Newton-Raphson Load flow procedure. 

After the search goal is achieved, or an allowable generation is attained by the ACO 

algorithm. It is required to performing a load flow solution in order to make fine adjustments 

on the optimum values obtained from the ACO-OPF procedure. This will provide updated 

voltages, angles and transformer taps and points out generators having exceeded reactive 

limits. To determining ail reactive power of ail generators and to determine active power that 

it should be given by the slack generator using into account the deferent reactive constraints. 

Examples of reactive constraints are the min and the max reactive rate of the generators buses 

and the min and max of the voltage levels of all buses. All these require a fast and robust load 

flow program with best convergence properties. The developed load flow process is based 

upon the full Newton-Raphson algorithm using the optimal multiplier technique [25, 26]. 

There are few parameters that to be set for the ant algorithm; these parameters are: ρ 

the evaporation rate, m the numbers of ants in the colony, α and β two coefficients. In the OPF 

case these values were obtained by a preliminary optimization phase, in which we found that 

the experimental optimal values of the parameters were largely independent of the problem. 

The initial pheromone τ0 is given by τ0 = (ng·L)-1 where L is the tour length produced by the 

nearest neighbor heuristic. The number of ants used is m=20. Regarding their initial 

positioning, ants are placed randomly, with at most one ant in each generator unit. 

A local improvement method suggested by Johnson & McGeoch [27] called the 

restricted 3-opt method has been adapted for use in the ACO. It involves successive arc-

exchanges in an attempt to improve a candidate solution. But we choose a limited number of 

exchanges in order to avoid over-long computation times. The local search is applied once the 

solution is built and the results of this phase are used to update the pheromone trails. 

The Ant Colony Algorithm 

Step1 Initialize: 

Set t=0 {t is the time counter}; 
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For every path (i,j) set an initial value τij (t) and set ∆τij (t,t+n)= 0; 

Place bi(t) ants on every bus i {bi(t) is the number of ants on bus i at time t}. 

Set s=1 {s is the tabu list index}; 

For i=1 to n do; 

For k=1 to bi(t) do; 

tabuk (s)= i {starting bus is the first element of the tabu list of the k-th ant}. 

Step2 Repeat until tabu list is full {this step will be repeated (n-1) times} 

Set s=s+1; 

For i=1 to n do {for every bus}; 

For k=1 to bi(t) do {for every k-th ant on bus i still not moved}; 

Choose the bus j to move to, with probability pij (t) 

[ ] [ ]
[ ] [ ]
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∈
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Move the k-th ant to j {this instruction creates the new values bj (t+1)} 

Insert bus j in tabu k (s). 

Step3 For k=1 to m do {for every ant} 

Compute Lk {it results from the tabu list} 

For s=1 to n-1 do {scan the tabu list of the k-th ant} 

Set (h,l)=(tabuk (s),tabuk (s+1)) 

{[h, l] is the edge connecting bus s and s+1 in the tabu list of ant k} 

khll,h
L

Q
)nt()nt( ++τ∆=+τ∆  

L
K: represent the length crossed by the K-th ant. 

Q: represent the amount of pheromone laid by the K-th ant. 

Step4 For every edge (i,j) compute τij(t+n)  

Set t=t+n 

For every path (i,j) set ∆τij(t,t+n)=0. 

Step5 Memorize the shortest path found up to now 

If (NC < NCMAX ) or (not all the ants choose the same tour) {NC is the 

number of algorithm cycles in NC cycles are tested NCm tours} then; 

Empty all tabu lists 
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Set s=1 

For i=1 to n do 

For k=1 to bi(t) do 

tabuk (s)=i {after a tour the k-th ant is again in the initial position} 

Goto step 2 

else 

Print shortest tour and Stop. 

 

 

Application Study, Results and Discussion 

 

The ACO-OPF is coded in MATLAB environment version7.6 (R2008a), and run 

using an Intel Pentium 4, core duo 1.87 GHz PC with 2 Go DDRAM-II- and 2 Mo cache 

memory. All computations use real float point precision without rounding or truncating 

values. More than 6 small-sized test cases were used to demonstrate the performance of the 

proposed algorithm. Consistently acceptable results were observed. 

The ACO-OPF method has been applied on the network test IEEE 57 buses that 

represent a portion of the American electric power system (the Midwestern, USA) for 

December 1961. This electric network is constituted of 57 buses and 7 generators (at the 

buses Nº: 1, 2, 3, 6, 8, 9 and 12) injecting their powers for a system nourishing 42 loads 

through 80 lines of transportation (Show in Fig 1). The base voltage for every bus is of 135 

kV. Table 1 show the coefficients of the quadratic functions of cost and the limits min and 

max of the actives powers, the technical and economic parameters of the seven generators of 

the IEEE 57-bus electrical network. 

 

Table 1: Generators parameters of the IEEE 57-bus Electrical Network 

Bus Number 
min

iPg  

[MW] 

max

iPg  

[MW] 

a 
[$/hr] 

b 
[$/MWhr] 

c  

[$/MW2hr] 

Bus 1 0.00 575.88 0.20 0.30 0.01 

Bus 2 0.00 100.00 0.20 0.30 0.01   

Bus 3 0.00 140.00 0.20 0.30 0.01   

Bus 6 0.00 100.00 0.20 0.30 0.01   

Bus 8 0.00 550.00 0.20 0.30 0.01   

Bus 9 0.00 100.00 0.20 0.30 0.01   

Bus 12 0.00 410.00 0.20 0.30 0.01     
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Figure 1. Topology of the IEEE 57-bus 

 

Does have end to prove that the set of the three parameters of the colony of ants β, ρ 

and q0 is extensively independent of the problem of optimization to solve, we applied ACO-

OPF on the network IEEE test 57 buses while using the 10 better combinations of the three 

parameters β, ρ and q0 and that give the best results for commercial traveler problem for the 

case of 30 cities [28]. The (Table 2) shows the values of actives powers, the losses of powers 

and the cost of fuel for the 10 ensemble wholes of parameters. We observe that all results are 

very near of the optimum. The average value of the cost for the 10 cases is the order of 

3173.3126 $/h. The value min of the cost is 3172.202 $/h corresponds a (β = 10, ρ = 0.6 and        

q0 = 0.3) with losses of powers 17.04 MWS. Therefore we remark that even the most distant 

cost value is acceptable since it is on the one hand moves away of the value min with only 

0.056% and on the other hand the value of the losses corresponds has this value that is 17.04 

MWS is better than the one corresponds at the value min with a report of 5.399%. 
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Table 2: Results of the ACO-OPF for the 10 ensemble wholes of parameters β, ρ and q0 for 
the IEEE 57-bus Electrical Network 

Results 
β = 10 

ρ = 0.6 

q0= 0.0 

β = 11 

ρ = 0.5 

q0= 0.1 

β = 9.5 

ρ = 0.8 

q0= 0.1 

β = 10 

ρ = 0.6 

q0= 0.3 

β = 12 

ρ = 0.5 

q0= 0.3 

Pg1 [MW] 252.89 249.74 241.44 242.89 252.74 

Pg2 [MW] 87.88   95.02   90.01   95.05   98.82   

Pg3 [MW] 132.89 129.68 138.01 138.89 139.60 

Pg6 [MW] 91.84 93.54 99.00 97.87 93.30 

Pg8 [MW] 321.72 329.72 321.09 311.02 310.72 

Pg9 [MW] 95.94 92.00 95.71 97.84 99.00 

Pg12 [MW] 286.70 280.28 282.62 285.10 276.28 

Power Loss [MW] 19.0600 19.1800 17.0800 17.9600 19.6600 

Generation cost [$/hr] 3173.012 3173.106 3172.995 3172.202 3173.220 
 

Results 

β =9 

ρ = 0.4 

0q = 0.4 

β = 11 

ρ = 0.8 

0q = 0.0 

β = 10 

ρ = 0.8 

0q = 0.6 

β = 6 

ρ = 0.3 

0q = 0.7 

β = 11 

ρ = 0.4 

0q = 0.4 

Pg1 [MW] 249.72 259.11 252.56 254.37 258.21 

Pg2 [MW] 97.57   93.20   92.40   89.54   88.99   

Pg3 [MW] 137.85 135.98 136.98 131.85 130.98 

Pg6 [MW] 97.81 99.00 98.30 95.81 95.08 

Pg8 [MW] 311.09 300.09 315.72 320.04 320.28 

Pg9 [MW] 97.71 99.61 99.03 98.78 95.71 

Pg12 [MW] 278.62 282.62 272.85 280.62 281.62 

Power Loss [MW] 19.5699 18.8099 17.0400 20.2099 20.0699 

Generation cost [$/hr] 3173.654 3173.007 3174.010 3173.995 3173.925 

Results deliberate by ACO-OPF that corresponds at ensemble (β = 10, ρ = 0.6 and q0 

= 0.3) are compare with those find by the QN method using the formula Update of BFGS and 

iterated with load flow of Newton Raphson (NR). The QN method uses a vector of penalty 

associates with the vector of controls Pgi. The values of the penalty coefficients are based on 

the formula of the B-coefficients losses. The use of the penalty functions that serves has keep 

the reactive powers of PV-bus in their admissible limits can produce problems of convergence 

that are practically has the distortion of the solution surface. 

The constraints of security are also verified for the angles and the amplitudes of 

tensions, the levels of voltage (Per Unit) for the IEEE 57-bus Electrical Network are drawn in 

the Fig. 2. In ACO-OPF, we not make recourse for functions of penalty being given that only 

the actives powers of the generators are used in the selective function and the reactive powers 

are planned in the process of load flow. The essential of this idea is that the constraints are 

shared in two types: the active constraints that are verified by the procedure of ACO whereas 
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the reactive constraints are update while using a procedure efficient of load flow by Newton-

Raphson.  

The results gotten including the generated cost and the losses of powers are compare 

with those acquired by the QN approved method and present on the Table 3. 

 
Table 3: Comparison of the results gotten by ACO-OPF and QN-OPF on the IEEE 57-bus 

Electrical Network 

Results 
Min 
limit  

Max  
limit  

QN-OPF ACO-OPF 

Pg1 [MW] 0.00 575.88 275.41 242.89 

Pg2 [MW] 0.00 100.00 98.95 95.05   

Pg3 [MW] 0.00 140.00 137.75 138.89 

Pg6 [MW] 0.00 100.00 99.27 97.87 

Pg8 [MW] 0.00 550.00 289.97 311.02 

Pg9 [MW] 0.00 100.00 99.05 97.84 

Pg12 [MW] 0.00 410.00 267.56 285.10 

Power Loss [MW] 17.16 17.9600 
Generation cost [$/hr] 3175. 506 3172.202 
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Figure 2. The levels of voltage (Per Unit) for the IEEE 57-bus Electrical Network 

 

The ACO-OPF method is also compared with the evolutionary methods of the 

references [29]. The publication Younes M., Rahli M. and Koridak L.A. [29] present the 

optimal power flow based on hybrid genetic algorithm. A comparison between the generate 

active powers calculated by the ACO and the evolutionary methods as well as the costs, the 

losses of active power and the time of convergence has been illustrated in the Table 4.  
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Table 4: Comparison of the ACO-OPF with different evolutionary methods of optimization 
viewpoint cost, losses and times of convergence 

Results 
Min 
limit  

Max 
limit  

GA-OPF 
[29] 

ACO-OPF 

Pg1 [MW] 0.00 575.88 266.850 242.89 

Pg2 [MW] 0.00 100.00 100.000 95.05   

Pg3 [MW] 0.00 140.00 140.000 138.89 

Pg6 [MW] 0.00 100.00 100.000 97.87 

Pg8 [MW] 0.00 550.00 280.438 311.02 

Pg9 [MW] 0.00 100.00 100.000 97.84 

Pg12 [MW] 0.00 410.00 281.875 285.10 

Power Loss [MW] 3171.785 3172.202 

Generation cost [$/hr] 18.40 17.96 

Time [Sec] 97.75 61.07 

 

It is important to note that the gotten results are similar those given by the 

evolutionary programming. Since the difference between the cost values resulting from the 

ACO-OPF only defers of the GA-OPF by a rate of 0.08% and of the EP-OPF by a rate of 

0.013%. The value of the losses found by ACO-OPF that is of 17.96 MWS is lower than the 

one found with GA-OPF by a rate of 1.85% and higher of the one of the EP-OPF by a rate of 

2.449%. We add that the ACO-OPF is important to underline that the computer time for our 

method is better than the two other evolutionary methods. 

 

 

Conclusions 

 

In this paper, a novel ant colony optimization based approach to OPF problem has 

been presented. The proposed approach utilizes the global and local exploration capabilities 

of ACO to search for the optimal settings of the control variables. Different objective 

functions have been considered to minimize the fuel cost, to improve the voltage profile, and 

to enhance voltage stability. The proposed approach has been tested and examined with 

different objectives to demonstrate its effectiveness and robustness. The results using the 

proposed approach were compared to those reported in the literature. The results confirm the 

potential of the proposed approach and show its effectiveness and superiority over the 

classical techniques and genetic algorithms. 

 

 



 

Leonardo Journal of Sciences 

ISSN 1583-0233 

 Issue 14, January-June 2009 

p. 1-17 

 

15 

References 

 

1. Dommel H.W., Tinney W.F., Optimal Power Flow Solutions, IEEE Transactions on 

power apparatus and systems, vol. PAS.87, No. 10, p. 1866-1876, 1968. 

2. Bouktir T., Belkacemi M., Zehar K., Optimal power flow using modified gradient 

method, Proceedings ICEL’2000, U.S.T. Oran, Algeria, p. 436-442, 2000. 

3. Fletcher R., Practical Methods of Optimization, John Willey & Sons, 1986. 

4. Dorigo M., Optimization, learning, and natural algorithms, Ph.D. Dissertation (in 

Italian), Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992. 

5. Dorigo M., Di Caro G., The ant colony optimization metaheuristic, in Corne D., Dorigo 

M., Glover F., New Ideas in Optimization, McGraw-Hill, p. 11-32, 1997. 

6. Dorigo M., Di Caro G., Gambardella L. M., Ant algorithms for discrete optimization, 

Artificial Life, Vol. 5, No. 2, p. 137-172, 1999. 

7. Dorigo M., Maniezzo V., Colorni A., Ant System, optimization by a colony of 

cooperating agents, IEEE Trans. System Man. and Cybernetics, Part B: Cybernetics, 

Vol. 26, No. 1, p. 29-41, 1996. 

8. Dorigo M., Gambardella L. M., Ant colonies for the traveling salesman problem, 

BioSystems, Vol. 43, p. 73-81, 1997. 

9. Dorigo M., Gambardella L. M., Ant colony System: a cooperative learning approach to 

the traveling salesman problem, IEEE Transactions on Evolutionary Computation, Vol. 

l, No. 1, p. 53-66, 1997. 

10. Maniezzo V., Colorni A., The ant System applied to the quadratic assignment problem, 

IEEE Trans. Knowledge and Data Engineering, Vol. 11, No. 5, p. 769-778, 1999. 

11. Stuetzle T., Dorigo M., ACO algorithms for the quadratic assignment problem, in Corne 

D., Dorigo M., Glover F., New Ideas in Optimization, McGraw-Hill, 1999. 

12. Bullnheimer B., Haïti R. F., Strauss C., Applying the ant System to the vehicle routing 

problem, in Voss S., Martello S., Osman I. H., Roucairol C., MetaHeuristics: Advances 

and Trend in Local Search Paradigms for Optimization, Kluwer, p. 285-296, 1999. 

13. Bullnheimer B., Haïti R. F., Strauss C., An improved ant System algorithm for the 

vehicle routing problem, Ann. Oper. Res., Vol. 89, p. 319-328, 1999. 

14. Gambardella L. M., Taillard E., Agazzi G.: MACS-VRPTW a multiple ant colony System 

for vehicle routing problems with time Windows, in Corne D., Dorigo M., Glover F., 

New Ideas in Optimization, McGraw-Hill, p. 63-76, 1999. 

15. Di Caro G., Dorigo M., Ant colonies for adaptive routing in packet-switched 

communication networks, Proc. 5th Int. Conf. Parallel Problem Solving From Nature, 

Amsterdam, The Netherlands, p. 673-682, 1998. 

16. Costa D., Hertz A., Ants can color graphs, J. Oper. Res. Soc., Vol. 48, p. 295-305, 1997. 

17. Schoofs L., Naudts B., Ant colonies are good at solving constraint satisfaction 

problems, Proc. 2000 Congress on Evolutionary Computation, San Diego, CA, p. 1190-

1195, 2000. 



Ant Colony Optimization Applied on Combinatorial Problem for Optimal Power Flow Solution  

Brahim GASBAOUI and Boumediène ALLAOUA 
 

16 

18. Wagner I. A., Bruckstein A. M., Hamiltonian(t)-an ant inspired heuristic for 

recognizing Hamiltonian graphs, Proc. 1999 Congress on Evolutionary Computation, 

Washington, D.C., p. 1465-1469, 1999. 

19. Bauer A., Bullnheimer B., Hartl R. F., Strauss C., Minimizing total tardiness on a single 

machine using ant colony optimization, Central Eur. J. Oper. Res., Vol. 8, No. 2, p. 125-

141, 2000. 

20. Colorni A., Dorigo M., Maniezzo V., Trubian M., Ant system for job-shop scheduling, 

Belgian J. Oper. Res., Statist. Comp. Sci. (JORBEL), Vol. 34, No. 1, p. 39-53, 1994. 

21. Den Besteb M., Stützle T., Dorigo M., Ant colony optimization for the total weighted 

tardiness problem, Proc. 6th Int. Conf. Parallel Problem Solving from Nature, Berlin, p. 

611-620, 2000. 

22. Merkle D., Middendorf M., An ant algorithm with a new pheromone evaluation rule for 

total tardiness problems, Proceedings of the EvoWorkshops 2000, Berlin, Germany: 

Springer-Verlag, Vol. 1803 then Lecture Notes in Computer Science, p. 287-296, 2000. 

23. Wood A. J., Wollenberg B.F., Power Generation, Operation and Control, 2nd Edition, 

John Wiley, 1996. 

24. Del Toro V., Electric Power Systems, Vol. 2, Prentice Hall, Englewood Cliffs, New 

Jersey, USA, 1992. 

25. Stagg G. W., El Abiad A. H., Computer methods in power systems analysis, McGraw 

Hill International Book Company, 1968. 

26. Kumar S., Billinton R., Low bus voltage and ill-conditioned network situation in a 

composite system adequacy evaluation, IEEE Transactions on Power Systems, Vol. 

PWRS-2, No. 3, 1987. 

27. Johnson D.S., McGeoch L.A., The traveling salesman problem: a case study in local 

optimization, in E. H. L. Aarts, J. K. Lenstra: Local Search in Combinatorial 

Optimization, John Wiley and Sons, p. 215-310, 1997. 

28. Gaertner D., Natural Algorithms for Optimisation Problems,’ Final Year Project Report’ 

June 20, 2004. 

29. Younes M., Rahli M., Koridak L.A., Optimal Power Flow Based on Hybrid Genetic 

Algorithm, Journal of Information Science and Engineering, Vol. 23, pp. 1801-1816, 

2007. 

30. Wood A. J., Wollenberg B. F., Power Generation, Operation and Control, New York, 

John Wiley and Sons, 1984. 

31. Chowdhury B. H., Rahman S., A Review Of Recent Advances In Economic Dispatch, 

IEEE Transactions on Power Systems, Vol. 5, No. 4, pp. 1248-1259, 1990. 

 


