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Abstract 

In this paper, an integrated approach is proposed for non-recursive 

formulation of connection coefficients of different orthogonal functions in 

terms of a generic orthogonal function. The application of these coefficients 

arises when the product of two orthogonal basis functions are to be expressed 

in terms of single basis functions. Two significant advantages are achieved; 

one, the non-recursive formulations avoid memory and stack overflows in 

computer implementations; two, the integrated approach provides for digital 

hardware once-designed can be used for different functions. Computational 

savings achieved with the proposed non-recursive formulation vis-à-vis 

recursive formulation, reported in the literature so far, have been 

demonstrated using MATLAB PROFILER. 
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Introduction 

 

Orthogonal functions, such as block pulse functions, Walsh functions, Legendre 

functions, Laguerre functions, Fourier functions and Haar functions, have been extensively 

used for providing piecewise constant solutions to different problems in Engineering and 

Sciences in terms of differential equations, analysis, optimization and identification of linear 

and non-linear systems.  

At the first place, piecewise constant solutions are computationally more efficient and 

secondly, they provide the only means to obtain the solution when the relevant conventional 

technique fails. In this approach, known and unknown continuous time functions are 

expanded in terms of the relevant orthogonal basis functions and various mathematical 

operations like integration, differentiation, multiplication etc. are replaced by matrices 

resulting in matrix algebraic equations which are then solved to find the required unknown 

functions. 

The need for computing the connection coefficients of the orthogonal functions arise 

when product of two orthogonal basis functions are to be expressed in terms of single basis 

functions.  

Hitherto, the recursive formulation have been reported in the literature [1-11,15,16] 

which are different for different orthogonal functions. The cited advantage of recursive 

formulation that the order of the involved matrices are less is not of much significance in the 

present era of abundant cheap computing capability available at hand. The possibility of 

multifaceted digital-hardware seems to be   better option rather. The present formulation is a 

step in that direction.  

Moreover, recursive formulations have the following disadvantages: 

1. Matrices at higher resolutions are calculated with the help of all the matrices at lower 

resolutions. So it becomes computationally inefficient. 

2. Recursive formulations are generally avoided in computer implementations. 

3. These recursive formulations are different for different orthogonal functions [1-7]. 

Paraskevopoulos [3,4] and Razzaghi [5] derived the relevant matrices for chebyshev series 

and fourier series in their own right, respectively. Improved product formula for walsh 

functions was proposed by Watanabe and Kawata for the LQG control design [6]. Afterwards, 

Hsiao et al. derived the matrix of integration for Haar wavelet [7] and proposed recursive 
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formulations for different matrices for Haar wavelet [8]. In a number of studies, Karimi et al. 

[9-11] applied these recursive formulations for analysis, optimal control and robust vibration 

control of linear time-invariant and time-varying systems. 

Lin Wu et al. [12] made the sole effort in presenting the integrated approach for 

computing the integration matrix for different orthogonal functions in terms of the generic 

orthogonal function and applied it for numerical inversion of the Laplace transform [13]. 

In [17,18] and the present paper, the work of Lin Wu et al. is further extended and an 

integrated approach is proposed for computing connection coefficients of orthogonal 

functions. The proposed non-recursive formulation is developed in terms of generic 

orthogonal function which is replaced by corresponding basis function for computing 

coefficients of a particular orthogonal function.  

The paper is organized as follows: In the second section, the principle, on which the 

proposed method is based, is discussed. The integrated non-recursive formulation for 

computing connection coefficients of orthogonal functions is developed in terms of a generic 

orthogonal function and is presented in third section. In fourth section, connection coefficients 

of different orthogonal functions are computed using the generic formulation. Computational 

savings achieved and an application of connection coefficients is demonstrated in next 

section, followed by conclusions in the end. 

 

 

Principle of the Proposed Method 

 

The proposed unified method is based on the following fundamental properties of 

orthogonal functions in general and block pulse functions in particular: 

1. The generic orthogonal function ( )k tφ  can be represented in symbolic form as 

0 1 1( ) [ ( )  ( ).............. ( )]T
m mt t t tφ φ φ −Φ =      (1) 

where elements 0 1 1( ), ( ).............. ( )mt t tφ φ φ −  are the basic functions. In numeric form, the 

corresponding sampled values of ( )k tφ  are arranged as rows to form the generic orthogonal 

function matrix mΦ . 
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2. The symbolic form of a generic orthogonal function ( )m tΦ  can be represented as the 

product of numeric form of the function mΦ  and symbolic form of  the block pulse 

functions ( )mB t  i.e.: 

( ) ( )m m mt B tΦ = Φ            (2) 

where: 

0 1 1( ) [ ( )  ( ).............. ( )]T
m mB t b t b t b t−=  and 

0 1 1( ), ( ).............. ( )mb t b t b t−  are the block functions        (3)  

The thk  block function is unity over the interval 

1,  where 0,1,2........... 1k kt k m
m m

+⎡ ⎤∈ = −⎢ ⎥⎣ ⎦
 and zero elsewhere and in numeric form 

=   m m mB I ×  where I  is Identity matrix of dimension m .  

For a particular orthogonal function the generic function ( )k tφ  is replaced by 

corresponding basis function. 

Analytical non-recursive formulation for computing connection coefficients is 

presented in the next section. 

 

 

Proposed Non-Recursive Formulation for Computing Connection Coefficients 

 

The multiplication of two generic orthogonal functions i.e. ( ) ( )T
m mt tΦ Φ  can be 

spanned by corresponding basis functions. Related expansion coefficients are known as 

connection coefficients, expressed as: 

( ) ( ) ( )T
m m mt t c C tφ φΦ Φ = Φ        (4) 

where Cφ  is the generic orthogonal function connection coefficients’ matrix of dimension 

m m×  and 0 1 ( 1)[   ........... ]T
mc c c cφ φ φ φ −=  are corresponding expansion coefficients. 

Using the fundamental property of orthogonal functions from (2), (4) can be expressed 

as: 

[ ]( ) ( ) ( ) ( )

                   ( ( )) ( )

TT
m m m m m m

T
m m m m

t t c B t B t c

diag B t c C t
φ φ

φ φ

Φ Φ = Φ Φ

= Φ Φ = Φ     (5) 
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where the disjoint property of block pulse functions 
 ( )    for 

( ) ( )
 0        for 

i
i j

b t i j
b t b t

i j
=⎧

= ⎨ ≠⎩
 is used.  

Eqn. (5) can be further simplified, using (2), by expressing expansion coefficients cφ  

in terms of block function expansion coefficients bc  as: 

( ) ( ) ( )T T T
b m m m mc B t c t c B tφ φ= Φ = Φ       (6) 

Simplifying (6) after post multiplying by [ ] 1( )mB t −  on both sides, results in: 

T
m bc cφ
−= Φ          (7) 

Substituting (7) in (5), we get: 

( ( )) ( )T T
m m m m b mdiag B t c C tφ

−Φ Φ Φ = Φ       (8) 

Simplifying (8), using the orthogonal property of the generic orthogonal function and 

numeric form of the block pulse function, Cφ  is obtained as 

1( )m b mC diag cφ
−= Φ Φ         (9) 

Equation (9) is the desired non-recursive formulation for computing connection 

coefficients of generic orthogonal function.  

The non-recursive formulation in (9) is shown to result in the connection coefficients 

of different orthogonal functions like Walsh, Fourier and Haar functions by using the 

appropriate basis functions in the next section.  

 

 

Computation of Connection Coefficients for Different Orthogonal Functions 

using the Proposed Method 

 

The proposed integrated approach is applied for computing connection coefficients of 

different orthogonal functions such as Walsh, Haar and Fourier functions in this section. For 

demonstration purpose, the results at resolution 4m =  are given for the example discrete 

sequence consisting of four samples accordingly and hence 1 3 5 7
8 8 8 8bc ⎡ ⎤= ⎢ ⎥⎣ ⎦

 due to 

identity nature of block basis functions. 
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Walsh Function 

The kernel of discrete Walsh transform, for 2nN = , is defined as: 

( ) 1
1

( ) ( )

0

1( , ) 1 i n i
n

b x b u

i

w x u
N

− −
−

=

= −∏
       (10) 

Where ( )ib z  is the thk  bit in the binary representation of z . 

For computing connection coefficients of walsh functions, denoted as wC  at resolution 

4m = , the corresponding basis function from (10) are substituted in (9) in place of generic 

orthogonal basis functions, resulting in: 

1
4 4( )  

1 2 1 4 1 8 0
1 4 1 2 0 1 8
1 8 0 1 2 1 4
0 1 8 1 4 1 2

w bC W diag c W −=

− −⎡ ⎤
⎢ ⎥− −= ⎢ ⎥− −⎢ ⎥

− −⎢ ⎥⎣ ⎦     (11) 

It is indeed the result derived by Chen and Hsiao in their original paper [1]. 

 

Haar Function 

The orthogonal set of Haar functions ( )kh t  is a group of square waves with magnitude 

of ±1 in certain intervals and zeros elsewhere [14], defined as: 

0 ( ) 1,      0 1h t t= ≤ <         (12) 
1
2

1 1
2

1,        0
( )

1,     1
t

h t
t

≤ <⎧
= ⎨− ≤ <⎩        (13) 

All the other functions are dilations and translations of (13), according to the relation: 

1( ) (2 ),   2 ,  0,  0 2j j j
nh t h t l n l j l= − = + ≥ ≤ <     (14) 

where  & j l  indicate dilations and translations respectively. The resolution m is given by:  

2  and  0,1......... 1jm n m= = −  

For computing connection coefficients of Haar functions, denoted as hC  at resolution 

4m = , the corresponding basis function from (12) & (13) are substituted in (9) in place of 

generic orthogonal basis functions, resulting in: 

1
4 4( )  

1 2 1 4 1 8 1 8
1 4 1 2 1 8 1 8
1 16 1 16 1 4 0
1 16 1 16 0 3 4

h bC H diag c H −=

− − −⎡ ⎤
⎢ ⎥− −= ⎢ ⎥− −⎢ ⎥
−⎢ ⎥⎣ ⎦    (15) 
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The result is exactly the same as reported in [8]. 

 

Fourier Function 

The basis of Fourier Series are complex exponentials, 0jk te ω− , where 0kω  represents 

the thk  harmonic of fundamental frequency 0ω . Discretized version of these continuous time 

complex exponentials gives the bases of Discrete Fourier Transform which are represented by 
2j kn
Ne
π⎛ ⎞−⎜ ⎟

⎝ ⎠ , where 0,1............ 1k N= − , 0,1............ 1n N= −  and N  is the total number of 

points at which the transform is calculated [4,5].  

In terms of the orthogonal set of functions N m= , where m  is the resolution. The 

discretized complex exponentials are then expressed as 
2j kn
me
π⎛ ⎞−⎜ ⎟

⎝ ⎠  where 0,1............ 1k m= − . 

The ( ) 'k t sƒ  represent the piecewise-constant approximation of discrete orthogonal set of 

functions as: 
2

( )
j kn

m
kf n e

π⎛ ⎞−⎜ ⎟
⎝ ⎠=         (16) 

For computing connection coefficients of Fourier functions, denoted as fC  at 

resolution 4m = , the corresponding basis function from (16) are substituted in (9) in place of 

generic orthogonal basis functions, resulting in  
1

4 4( )

0.625 0.125 0.25 0.25 0.25 0.125 0.25
0.125 0.25 0.125 0.125 0.25 0.25
0.25 0.125 0.25 0.25 0.625 0.125 0.25
0.125 0.25 0.25 0.125 0.25 0.625

f bC diag c

j j j j
j j

j j j j
j j

−=

− − − − +⎡ ⎤
⎢ ⎥− − − +⎢ ⎥=
⎢ ⎥− − − + + −
⎢ ⎥− − − − +⎣ ⎦

F F

  (17) 

Note that since the basis of Fourier function are complex, its connection coefficients 

are also complex. The result in (17) is exactly same as reported in [5]. 

Similarly connection coefficients of other orthogonal functions, possessing sinusoidal 

and non-sinusoidal basis functions such as Discrete cosine functions (DCT) and Hartley 

functions (DHT), can also be computed by the proposed integrated approach.  

Computational savings achieved via the proposed integrated non-recursive formulation 

for computing the connection coefficients of orthogonal functions, vis-à-vis the recursive 

formulation, is demonstrated in the next section for the case of Haar functions due to its nice 
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properties of multi-resolution and compact support. State response of a linear time-variant 

system is also presented as an application. 

 

 

Computational Savings and Application 

 

Computational Savings 

The analytical non-recursive formulation for computing the connection coefficients for 

the case of Haar functions is obtained, as in (15), for any resolution m  as 1( )h m b mC H diag c H −= .  

The corresponding recursive formulation reported in the literature [8] is: 

( )
2 2 2 2

2 22 2

( )

(1 1) 01

( )
,

( )

m m m m

m mm m

bh

hm hT
b a

C H diag c
C C c

diag c H diag c H
×

× ×

×−
×

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 
2

0 1 1 ............... m
T
ac c c c −

⎡ ⎤
⎣ ⎦� , 

2 2
11 ...............m m

T

b mc c c c −+
⎡ ⎤
⎣ ⎦� . 

 

Computational savings achieved in computing connection coefficients using the 

proposed non-recursive formulation vis-à-vis recursive formulation is shown using MATLAB 

PROFILER in Table 1. The PROFILER is obtained on a PENTIUM(R) M 1.73 GHz machine 

for the same number of files called. 

 
Table 1. Computational Efficiency for Proposed Integrated Non-Recursive and Existing Recursive 

Method: Computing Connection Coefficients of Haar Functions using Matlab Profiler 
Resolution Proposed Integrated Non-recursive Approach Existing Recursive Approach 

16m =  

 

256m =  
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It is evident from Table I. that computations are twice as fast in the proposed non-

recursive formulation as in recursive formulation.  

 

Application  

Consider a first-order linear time-variant system given as: 
2( ) ( ) ( ),  (0) 0t tx t e x t e u t x− −= − + =&        (18) 

where 1( )x t R∈  is the state, 1( )u t R∈  is the input and (0)x  is the initial state of the system.  

 
Comparing (18) with the generalized linear time-variant system state-space model of 

the following form: 

0( ) ( ) ( ) ( ) ( ),  (0)x t A t x t B t u t x x= + =&       (19) 

we get ( ) tA t e−= −  and 2( ) tB t e−= . 

The product of ( )te x t−−  and 2 ( )te u t−  are simplified to be spanned by Haar basis with 

the help of proposed non-recursive formulation for computing connection coefficients to 

obtain state response of the system in (18).  

In Haar transform domain, the final simulation time ft  is normalized to be unity by 

substituting ft t σ=  in (18) where 0 1σ≤ < . 

After normalization of time scale, (18) becomes: 

( )2( ) ( ) ( )f ft t
fx t e x e uσ σσ σ σ− −= − + −&

      (20) 

Next each term in (18) is expanded into the Haar transform as 

( ) ( )T
mx d Hσ σ=&                      (21) 

( ) ( )T
mx c Hσ σ=         (22) 

where 0 1 1[  ............... ]T
md d d d −=  and 0 1 1[  ............... ]T

mc c c c −=  are the expansion coefficients 

of ( )x σ&  and ( )x σ  respectively. The ( )mH σ  is the Haar basis.  

Relation between Td  and Tc  are obtained by integrating (21) on both sides: 

0

( ) ( ) (0)T
mx d H d x

σ

σ σ σ= +∫
       (23) 
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Using forward operational matrix of integration hmQ  derived by Lin Wu et. al [12] and 

substituting the expansions from (21) and (22), (23) becomes: 

0( ) ( ) ( )T T T
m hm m mc H d Q H c Hσ σ σ= +       (24) 

where initial state (0)x  is expanded in Haar domain as  0(0) ( )T
mx c H σ= , 

0 00 01 0 1[  ............... ]T
mc c c c −= . The effect of the term ft , arising out of normalization of time 

scale, is incorporated in hmQ . 

Solving (24) for  Td  yields: 

( ) 1
0

T T T
hmd c c Q−= −

        (25) 

On the similar lines, the expansions of ( )A σ , ( )B σ  and ( )u σ  are expressed as: 

( ) ( )T
mA a Hσ σ=                (26) 

( ) ( )T
mB b Hσ σ=                     (27) 

( ) T
mnu u Hσ =                           (28) 

where 0 1 1[  ............... ]T
ma a a a −= , 0 1 1[  ............... ]T

mb b b b −=  and 0 1 1[  ............... ]T
mu u u u −=  are 

the expansion coefficients of ( )A σ , ( )B σ  and ( )u σ  respectively.  

The problem involves obtaining the state response of the system, hence Haar 

expansions of various functions, from (21) – (28), are substituted in (18) to obtain: 

( ) ( ) ( ) ( ) ( )T T T T T
m m m m md H a H c H b H u Hσ σ σ σ σ= +     (29) 

Rearranging (29) yields: 

( ) ( ) ( ) ( ) ( )T T T T T
m m m m md H c H H a u H H bσ σ σ σ σ= +     (30) 

Each of the term ( ) ( )T
mn mnH Hσ σ  in (30) is expressed to be spanned by Haar basis 

using the proposed integrated non-recursive formulation for computing connection 

coefficients, which are evaluated non-recursively in (15), as: 

ˆ ˆ( ) ( ) ( )T T T
m m md H c AH u BHσ σ σ= +       (31) 

where ( )�.  denotes the connection coefficients for the corresponding variables.  

Right multiplying each term in (31) by [ ] 1( )mnH σ − , we get: 

ˆ ˆT T Td c A u B= +         (32) 
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Substituting the value of Td  from (25) and collecting the terms results in: 

( )1 1
0

ˆ ˆT T T
hm hmc Q A c Q u B− −− = +

       (33) 
Tc  is obtained from (33) as: 

( )( ) 1
1 1

0
ˆˆT T T

hm hmc c Q u B Q A
−

− −= + −
      (34) 

It is trivial to calculate the inverse of the term ( )1 ˆ
hmQ A− −  due to sparse nature of the 

matrix - a key characteristics of Haar function [14].  The computed values of Tc  from (34) are 

used to evaluate the desired values of state ( )x σ  using (22) for the input ( ) tu t e−= , resolution 

32m =  are shown in Fig. 1 along with the analytical solution. 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Time ( t )

St
at

e 
x 

( t
 )

 
Figure 1. State response of linear time-varying system 

 
It is evident from Fig. 1 that the state response, of the linear  

time-variant system, evaluated using the proposed integrated non-recursive approach, is 

conforming well to the analytical solution which is shown as continuous curve.  

 

 

Conclusions 

 

An integrated non-recursive formulation for computing the connection coefficients of 
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orthogonal functions has been successfully developed and presented in terms of a generic 

orthogonal function. This generic formulation is then shown leading to particular cases of 

different orthogonal functions such as Walsh, Haar, and Fourier. The integrated scope of the 

proposed formulation is established by obtaining these particular instances merely by 

replacing the generic basis with the corresponding basis. Computational savings obtained, in 

using the proposed non-recursive formulation, are demonstrated with the help of MATLAB 

PROFILER vis-à-vis recursive formulation, reported and used in the literature so far. State 

response of a linear time-varying state-space system is obtained to demonstrate an application 

of the connection coefficients. Further computational savings can be explored by devising 

computationally efficient algorithms for finding the inverses of matrices involved.  
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