
 

Leonardo Journal of Sciences 

ISSN 1583-0233 

 Issue 21, July-December 2012 

p. 1-12 
 

1 
http://ljs.academicdirect.org/  

 

 

A Mathematical Model of Complacency in HIV/AIDS Scenario: Sex-

Structure Approach 

 

Gbolahan BOLARIN* 

 
Department of Mathematics and Statistics, Federal University of Technology, Minna, Niger 

State, Nigeria.  
E-mail: g.bolarin@futminna.edu.ng 

* Corresponding author: +2348033883137 

 

 

Abstract 

In this study we use sex-structure approach to examine the effect of 

complacent sexual behaviour (risky sexual activities) on the rate of infection 

of HIV/AIDS in a population. We partitioned the population into two classes 

(male and female) represented by and m f to express our model equation as a 

set of differential equations. We were able to express the number of AIDS 

cases (male and female) as linear functions that depend on the number of 

AIDS patient present in the population. We were also able to determine the 

equilibra states of the model. We found that the Basic Reproduction Number 

(R0, which is the number of secondary infections due to introduction of 

infective into the population) of both female and male partitions of the 

population is given as 0 0 0f mR R R= . 
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Introduction 

 

The issue of HIV/AIDS and other Sexually Transmitted Diseases (STD) are no longer 

just a national or local issue but a global one. 

Complacency in this study is used to mean embarking to high risk sexual behaviours 

such as multiple sex partners, sex with prostitutes and non-condom use or low compliance 

level or incorrect use of condom when it has been discovered that HIV prevalence in a 

community has reduced to a very low level, with the number of AIDS cases becoming less in 

the community. Complacency is used in the context of a community that has registered 

significant decreases in HIV prevalence [4].  

In this study we shall consider a sex structure model involving only male and female 

as sex partners i.e we shall not consider same sex interaction because that is not legal in most 

countries and we are considering sexual transmission since it is the principal mode of 

infection in most countries. To model complacency, it is assumed that behaviour change 

depends on the number of AIDS patients (HIV infected persons with fully blown AIDS 

symptoms) in the community. We shall consider three classes or compartments in our model 

which are, susceptibles, infectives and AIDS partitions, with population numbers in each class 

denoted as functions of time by Si(t), Ii(t) and Ai(t) where i = f ,m denote female and male 

populations, respectively. Thus, we define our sex-structured model in the context of a two-

sex structure. 

 

 

Material and Method 

 

Model Formulation 

For the purpose of this study we take the total population to be unity and so all the 

compartments sum up to 1. 

We assume that, at any moment in time, new individuals enter the heterosexually 

active population at a rateΛ , a proportion ρ (0 ≤ ρ ≤ 1) of these individuals are assumed to be 

female susceptibles (moved to the ( ) fS t  class) and the complementary proportion (1 − ρ), are 

male susceptibles and they belong to the ( )mS t class. 

We let μ  be the natural death rate for the sexually active adults. The removal rate of 
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susceptible through infection is the number of new HIV infections per unit time. This rate is 

important in calculating HIV incidence which by definition is the number of new infected 

persons in a specified time period divided by the number of uninfected persons that were 

exposed for this same time period. 

The rate at which an individual acquires new sexual partners (contact rate) per unit 

time is denoted by jc ( ,j f m= ). Assume that a proportion of these partners are infected male 

ie m

m

I
N

and at each of these sexual contacts with infectives male, a susceptible female has a 

probability, mβ of getting infected. Similarly, if we assume that a proportion of these partners 

are infected female ie f

f

I
N

and at each of these sexual contacts with infectives female, a 

susceptible male has a probability, fβ of getting infected. Let m fcβ  be a function of the 

number of AIDS cases resulting from infection by an infected male given by ( )mAη  and let 

f mcβ  be a function of the number of AIDS cases resulting from infection by an infected 

female given by ( ) fAη , then the total probability of one susceptible female getting  infected 

from any of their sexual contacts per unit time is ( ( )) m
m

m

IA t
N

η  and the total probability of one 

susceptible male getting infected from any of their sexual contacts per unit time is 

( ( )) f
f

f

I
A t

N
η . The number of new HIV infected female and male per unit time are given by 

( ( )) f m
m

m

S I
A t

N
η  and ( ( )) m f

f
f

S I
A t

N
η  respectively. 

Upon becoming infected with HIV, female and male susceptibles enter the classes fI  

and mI  of infected individuals respectively. Female and male infectives are recruited through 

new HIV infections described above and removed through progression to AIDS at rate 

 and f mv v  respectively and through natural death at rate μ . Therefore 1

iv
 (for ,i f m= ) is the 

duration spent in the infective stage  and 1
μ

 is the life expectancy of the adult population. 

Both of these rates are assumed constant in the model. 
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Individual in AIDS class are recruited through progression from the infective stage to 

the AIDS stage and removed through AIDS accelerated deaths at rate δ and natural death rate 

μ and so 1
δ

 is the average duration spent in the AIDS stage if natural deaths are assumed 

constant in the model. It will be ideal to varyingδ , since there are advances in health care 

there is being provided for individuals living with HIV/AIDS. 

There is a constant emigration rate α > 0 of individuals to other countries except for 

the AIDS patients. This assumption makes the model more appropriate for Nigeria where a 

significant proportion of the population emigrates to developed countries for better 

educational facilities and in search of employment. 

 

The Model Equations 

From above assumptions we have the following as our model equation. 

( ) ( ) ( )
( ( )) ( ) ( )

( )
f f m

m f
m

dS t S t I t
A t S t

dt N t
ρ η μ α= Λ − − +  

( ) ( ) ( )
( ( )) ( ) ( )

( )
f f m

m f f
m

dI t S t I t
A t v I t

dt N t
η μ α= − + +  

( )
( ) ( ) ( )f

f f f

dA t
v I t A t

dt
σ μ= − +

       
(1) 

( ) ( )( ) (1 ) ( ( )) ( ) ( )
( )
m fm

f m
f

S t I tdS t A t S t
dt N t

ρ η μ α= − Λ − − +  

( ) ( )( ) ( ( )) ( ) ( )
( )
m fm

f m m
f

S t I tdI t A t v I t
dt N t

η μ α= − + +  

( ) ( ) ( ) ( )m
m f m

dA t v I t A t
dt

σ μ= − +  

The parameters , , , , , , , , ,  and f m f m f mc c Rβ β ρ μ δ α ν ν +Λ ∈  with m fβ β>  and the 

initial conditions for system (1) at time t=0 are, 

,( ) ( ) 0, ( ) , ( ) 0, ( ) , ( ), ( ) , ( ) 0f f m m f f m mS s S o s S s S o s I s I o s I s I o s= ≥ = ≥ = = ≥  for all [ ,0)s τ∈ −  

with , (0) 0, , (0) 0, , ( ) 0, (0) 0, (0) , 0f m f m f fS o S o I o s I o A A o> > > > = >  and Am(0) = Am,o > 0. 

  The Disease free Equilibrium 

 

Following the approach of [2, 5, 6] the disease-free equilibrium is when the disease is 
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not exiting the population and it is given as 

0 0 0 0 0 0 (1 )( , , , , , ) ( , ,0,0,0,0)f m f m f mS S I I A A ρ ρ
μ α μ α
Λ − Λ

=
+ +

 

 

Endemic Equilibrium  

The endemic equilibrium of system (1) is given as 

( ) ( )
e m
f e

m m m

NS
A I N

ρ
η μ α

Λ
=

+ +
 

(1 )
( ) ( )

fe
m

f f f

N
S

A I N
ρ

η μ α
− Λ

=
+ +

 

1

1

( ) (1 )
( ) ( ) ( ) ( )

e
f

fe
m

f m m f

GI
G

A G
I

A v G v N G
η ρ

η μ α μ α μ α

=

− Λ
=

+ + + + + +

 

( )

( )

e
f fe

f

e
e m m
m

v I
A

v IA

δ μ

δ μ

=
+

=
+

 

where 
2 2

1

( ) ( ) (1 ) ( )[ ( ) ( )]

( )[ ( ) ( ) (1 ) ( )( ) ( ) ]

m f f m f m

f m f m m f

G A A v N N v

and
G v A A N v A

η ρ η ρ μ α μ α μ α

μ α η η ρ μ α μ α η

= Λ − − + + + + +

= + + − Λ + + + +
 

 

The Basic Reproduction Ratio (Number) 

The basic reproduction number 0R (the average number of secondary infection due to 

introduction of an infected individual into a disease free population). 

Let the probability that an infected individual in the incubation period time t has 

survived to develop AIDS is ( )e α μ κω − += . 

Following the approach of [7,10], if a single newly infected male is allowed into the 

population at equilibrium, this individual will persist and infect others with probability  

( )e α μ κ− +
 at time t k<  
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0

0( ) f
m

m

S
A

S
η⇒  

Therefore the number of female this individual will infect over time k  will be 
0 0

( )
0 0

0

( )
( ) (1 )

( )

k
f m ft

of m
m m

S A S
R A e dt

S S
μ α η

η ω
μ α

− += = −
+∫  

Similarly if an infected female is introduced into the population at equilibrium the 

number of male this individual will infect at time k will be  
00

( )
0 0 0

0

( )
( ) (1 )

( )
f mtm

m f
f f

A SSR A e dt
S S

κ
μ α η

η ω
μ α

− += = −
+∫  

It is expected that the number secondary cases per generation due to an infected male 

is  

0 0f mR R =
20

0

( )
(1 )

( )
f m

f

A S
S

η
ω

μ α
⎛ ⎞

−⎜ ⎟⎜ ⎟+⎝ ⎠
 

0

0 0 0 0

( )
(1 )

( )
f m

f m
f

A S
R R R

S
η

ω
μ α

= = −
+

  

Similarly the number secondary cases per generation due to an infected female is 

0 0m fR R =
20

0

( )
(1 )

( )
f m

f

A S
S

η
ω

μ α
⎛ ⎞

−⎜ ⎟⎜ ⎟+⎝ ⎠
 

0

0 0 0 0

( )
(1 )

( )
f m

m f
f

A S
R R R

S
η

ω
μ α

= = −
+

 

Therefore the reproduction number 0R  is given as; 

0 0 0f mR R R=
         (2) 

 

Equilibrium in ( ,f fI A ) plane 

We will base our reasoning on the argument put forward by Baryarama et al (see [1]). 

Suppose at equilibrium state in ( ,f fI A ), the number of female susceptible continue to 

increase and hence both fS  and fN  vary. So, on setting the third equation of system (1) to 

zero we have; 
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*
*

*
*

( )
( )

f f
f

f
f

f

v I
A

A
I

v

σ μ
σ μ

⎫
= ⎪

+ ⎪
⎬

+ ⎪= ⎪
⎭          

(3) 

Similarly from sixth equation of system (1) we have 
*

*

*
*

( )
( )

m m
m

m
m

f

v IA

AI
v

σ μ
σ μ

⎫
= ⎪+ ⎪

⎬
+ ⎪=

⎪⎭          

(4) 

From the second equation of system (1) 
*

* *

( )
                                                                   (5) 

( )
f f

m m m

S v A
N A A

μ α
η

+ +
⇒ =  

Similarly from the fourth equation of system (1) we have 
*

* *

( )                                                                                 (6)
( )

m m m

f f f

S v A
N A A

μ α
η
+ +

=  

Now, the total population TN  (say) is given as;  

1T f mN N N= + =   

Therefore, 
**

1  f fm m

m f m f

S IS I
N N N N

+ + + = , this is so because they are proportions that can 

only sum to unity. 

Using this fact and equations (3)-(6) we have the following result; 
**

* * * *

( ) ( )( ) ( ) 1                              (7)
( ) ( )

f fm m

m m f f f m f f

v Av A
A A A A v N v N

μ α σ μμ α σ μ
η η
+ + ++ + +

+ + + =  

 
 

Results and Discussion 

 Theorem 

Suppose from (1)  as .fS t→∞ →∞  Further, suppose that ( )mAη  as an inverse, 
1  on (0,1).η−  Then there exist tA > 0 and εA > 0 such that for all t > tA, |Af(t) - Af(tA)| < εA and 

|If(t) - If(A)| < εA. More so Sf(t) → ∞ and t → tA. 
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Proof 

For convenience let * *  m fA A= and from (7) let 1f f

m m

S I
N N

+ =   

So from above equation 1(  0 also 0)f f f

m m m

S I A
and

N N N
→ → →  we will obtain 

*

* 1
1

1

( ) ( ) as 

( ) and  sufficiently large  an 0 

such that  ,  ( ) ( )

f m

f m A

A f f A

A t

A t

t t A t A t

η ν μ α

η ν μ α ε

ε

−

→ + + →∞

⇒ = + + ∃ >

∀ > − <

  

But 

* * 1

1 2

( ) ( )

Hence for sufficiently large   

( ) ( )

f f m
f f

A A

f f A
f

I A v
v v

t t t

I t I t
v

δ μ δ μη μ α

δ μ ε ε

−+ +
= = + +

∀ >
+

− < =

 

If we choose 2 2 1 since  ends the proof for the first part of our theorem.Aε ε ε ε= >  

Now, since * *  and 1f f
m f

m m

S I
A A

N N
= + =  

then  

*

* *

*
*

( )

0
( )

( )
( )

( )

f f

m m

f f

f f m

f
f f f

m

S v
N A
and

S v
S I A

then
v

S S I
A

μ α
η

μ α
η

μ α
η

+ +
=

+ +
− =

+

+ +
= +

 

*

*

( )
( ) ( )

f f
f

m f

I v
S

A v
μ α

η μ α
+ +

⇒ =
− + +        

(8) 

Since  
*( )  as  

then  as 
f f A

f A

A v t t

S t t

η μ α→ + + →

→∞ →
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Hence the behaviour of ( ) for f AS t t t>  remains of little consequence to * * and f fA I  since 

* *( ) .f f A f fS S t I A> >> >  Hence the end of prove for the second part of the theorem.  From 

the theorem above we can express the equilibrium point in ( ,f fI A ) explicitly as 

* 1( )f fA η ν μ α−= + +  (since we assumed the η  is invertible) and 
1

* ( )( )f
f

f

I
η σ μ ν μ α

ν

− + + +
=  . 

More so, we can show that if ( ) fAη  is linear, the equilibrium point in ( ,f fI A ) 

obtained using the theorem is the same with the one obtained by direct method (see [1] for 

example).  

 

Corollary 1 

Suppose from (1)  as .mS t→∞ →∞  Further, suppose that ( ) fAη  as an inverse, 

1  on (0,1).η− Then there exist 0 and 0 such that for all ,  | ( ) ( ) |A A A m m A At t t A t A tε ε> > > − <  

 and | ( ) ( ) | . More so, ( )  as .m m A A m AI t I t S t t tε− < →∞ →  

Proof 

The proof follows from theorem 1. 
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Figure 1. Time Trend of number of Infected male ( mI ) and female ( fI ) with Mean life time of 

HIV/AIDS patient = 8 years. 
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Figure 2. Time Trend of number of Infected male ( mI ) and female ( fI ) with Mean life time of 

HIV/AIDS patients = 4 years 
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Figure 3. Time Trend of number of Infected male ( mI ) and female ( fI ) with Mean life time of 

HIV/AIDS patient = 2 years 

 

For our model we were able to show that the Basic Reproduction Number 0R  for the 

female and male individuals in the population is given as 0 0 0f mR R R=  (from equation (2)). 

This shows that the Basic Reproductive Number of female proportion in the population due to 
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introduction of infected male into a population is the same as the Basic Reproductive Number 

of male proportion due to introduction of infected female into a population. 

This is similar to the study of Kamali et al (see [9]), in their article they found that 

there is a relationship between HIV prevalence and sexual behavioural change.    

Also from figures 1-3 it could be noticed that the number of infected females in each 

case are more than that of males, this is due to the fact that the infectivity rate of male 

individual is higher than that of female (due to high concentration of the virus in sperm), this 

is a fact that has been alluded to by various authors; see [10]. 

 

 

Conclusion 

 

The model formulated using sex-structure approach show that complacency could lead 

to high infection rate in a population. It can be seen from figures 1-3 that the lower the 

expected life time of HIV/AIDS patient in a population the higher the rate of infection, this is 

due to the fact that more people can embark on high sexual risk since there is an assumption 

that HIV/AIDS patients do not persist in a population for longer period.  

From our findings it will be of great service to nations if the authorities in charge of 

prevention of HIV/AIDS can find a way to increase life expectancy of HIV/AIDS patients 

through treatment so has to prevent possible complacency behaviour by the populace. 
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