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Abstract
In this paper we consider the construction of implicit second derivative
Runge-Kutta collocation methods designed for the continuous numerical
solution of stiff systems of first order initial value problems in ordinary
differential equations. These methods are obtained based on the multistep
collocation technique, which are shown to be convergent, with improved
regions of absolute stability. Although the implementation of the second
derivative Runge-Kutta collocation methods remains iterative due to the
implicit nature of the methods, the advantage gained makes them suitable for
solving stiff systems with eigenvalues of large modulus lying close to the
imaginary axis. Some absolute stability characteristics and order of accuracy
of the methods are studied. Finally, we show two possible ways of
implementing the methods and compare them on some numerical examples
found in the literature to demonstrate the high order of accuracy and reliability
of the methods.

Keywords
Block hybrid schema; Continuous schema; Multistep collocation formula;

Second-derivative Runge-Kutta method; Stiff system

http://ljs.academicdirect.org/

43


mailto:daudagyakubu@gmail.com

Application of second derivative Runge-Kutta collocation methods to stiff systems of initial value problems
Samaila MARKUS and Dauda G. YAKUBU

Introduction

In the past few decades many authors proposed different numerical integration
methods to obtain more accurate approximate solution to ordinary differential equations
(ODEs), especially stiff systems of initial value problems in ordinary differential equations.
However, extensive numerical experiments have shown that implicit integrators have the
numerical superiority over the explicit methods when applied to solve stiff systems of ODEs
[1-4]. In particular, implicit Runge-Kutta methods play an important role in the numerical
solution of stiff systems of ODEs, because they have good stability properties and high order
of convergence. In this paper we derive implicit second-derivative Runge-Kutta (SDRK)
collocation methods designed for the continuous numerical solution of stiff systems of initial
value problems in ODEs of the form

Y100y v =vo X<l T) (L.1)

Here the unknown function y is a mapping y:[X.,T]->R" and the right-hand side
function f is f:[xo, TlxR°—R? which is assumed to be sufficiently smooth, yo—R? is the given
initial value and dy/dx is the differential operator. Let h>0 be a constant step size and we
define the grid by x,=Xo+nh, n=0,1,2,..,N where Nh=T-xcand a set of uniformly spaced points
on the integration interval is defined by Xo<x;<X:<.....<Xp+1=T The main reason for
considering the second derivative terms is to derive a set of methods which are suitable for the
continuous numerical solution of stiff differential systems with Jacobians having large
eigenvalues lying close to the imaginary axis. However, for some important classes of
problems it is necessary, for the sake of efficiency, to allow second-derivative integration
methods to be used (see [5-8]) and in this case existing numerical methods tend to be much
less satisfactory. Further, we will examine in detail the problem of implementing the second-
derivative Runge-Kutta integration methods with fixed time steps. We show that, even though
enormous gains in efficiency can be achieved if the methods are implemented in an
appropriate way, there are still some important practical problems to be overcome, for
example, the calculation of the second derivative terms in the methods which costs little
higher than the first derivative terms [9].

There are several eminent authors who derived methods that can handle non-stiff, stiff,
periodic and oscillatory problems handy [2-4,9], but little seems to have been done in deriving

implicit second-derivative Runge-Kutta collocation methods with minimal function
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evaluations, uniformly accurate orders and maximal gain in efficiency. Hence, these motivate
us to consider the construction of the implicit second derivative Runge-Kutta collocation
methods in this paper.

Definition 1.1: A numerical method is said to be A(a)-stable ae(0,7/2) if its region of
absolute stability contains the infinite wedge W,, where

W, ={ih:-a <|r —arg(2h)| < a} see [10].

Theorem 1.1: If f satisfies Lipschitz condition with constant L then the initial value
problem y’ (X)=f(x,y(X)), y(Xo)=Yo possesses a unigue solution on the interval [xo, T] see [11].

Definition 1.2: A solution y(x) of (1.1) is said to be stable if given any >0 there is

6>0such that any other solution y(x) of (1.1) which satisfies

ly(a)-y(a)| <o (1.2a)
also satisfies

ly(x) -9 (x)| <e (1.2b)
for all x>a.

The solution y(x) is asymptotically stable if in addition to (1.2b) as x—o.

Material and method

The implicit second derivative Runge-Kutta collocation methods
In this section our objective is to describe the construction of the implicit second-
derivative Runge-Kutta collocation methods based on the multistep collocation technique. In
this regard we seek an approximate solution to the exact solution of (1.1) by the interpolant of
the form
p-1
y(X) =y +a X+ a Xt 4o, X =) X (1.3)
i=0
which is twice continuously differentiable. We set the sum r+s+t to be equal to p so as to be
able to determine {a;} in (1.3). In this formulation r denotes the number of interpolation
points used and s>0, t>0are distinct collocation points. Interpolating (1.3) at the points {Xn+j},
and collocating y’(x) and y”(x) at the points {cn:j} we obtain the following system of

equations
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y(Xn+j) = yn+j ! (J :0'1!2""'r_1) (14)
yI(Cn+j) = fn+j! (J :0'1!2""18_1) (15)
y”(cn+j) = gn+j’ (J :Oilizi"-it_l) . (16)
In fact equations (1.4) to (1.6) can be expressed in the matrix-vector form as
Da=y (1.7)
where the p-square matrix D, p- vectors o and y are defined as follows:
1 X, x2 x> x! xP
1 Xn+1 X§+1 Xr::’+l X:+1 Xrir_ll
Xir-1 Xr?+r—1 Xr?+r—l X:+r—l er;rl—l
0 1 2c, 3¢ 4c® ---DcP?
D=|. : : . L (1.8)
1 2Cn+s—l 3C§+s—1 4Cg+s—1 T D,Cnp;sz—l
0 2 6c, 12c? ---D'c!?®
0 0 2 6Cn+t—1 120r?+t—1 D”Cr?;g—l

az(ao,al,azy,...,apfl)T, V=(Yrreoes Yo Yoreoor Yorets Yoo Vi)
where D’=(p-1) and D’’=(p-1)(p-2) in (1.8) represent the first and second derivatives
respectively and correspond to the differentiation with respect to x. Similar to the
Vandermonde matrix, the matrix D in (1.7) is non-singular. Consequently, equation (1.7) has
the unique solution given by
a=Cy where C=D-1 (1.9)
Rearranging equations (1.7) to (1.9) we obtain the multistep collocation formula of the

type in [12] which was a generalization of [13] and here we extend to second derivative as

follows.
r-1 s—1 t-1
y(X) = z aj (X)yn+j + hz ﬂj (X) fn+j + hzz a)j (X)gn+j (110)
i=0 i=0 j=0
where:
yn+j ~ y(Xn + Jh)

fn+j = f(Xn + _]h, y(xn + Jh))
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X:Xn+j

y = yn+j

df (x, y(x))

gn+j = dX

Here aj(X), Bj(x), wj(x) are continuous coefficients of the method which are to be

determined. They are assumed polynomials of the form

a;(x) = _pz_i“j,mxi
6,00 = 5B, (L.1)

p-1 _
h’w,(x) =D h’w;,.X
i=0

The numerical constant coefficients oj;+1, fji+1, ®ji+1 in (1.11) are to be determined.

In fact, the above coefficients can be obtained from the components of the matrix D™.
That is, if the identity (1.12) holds. Actual evaluations of the matrices C and D are carried out
with a computer algebra system, for example, Maple, to determine the constant coefficients
0,i+1, Pji+1, and oji+1 in (1.11).
a®a® -af™ hBO B el h2el?
a®a® ,__alu—n hBO --hpEd 2@ .. .h2pl™
a®a®.qf™ hBO - hBEY el - h2pl

N
allal ol hﬂ(o)...hﬂ(s—l) h w(O)___h ol =D (1.12)

0 g® ...qD © | (=) 2,0 2 (1)
ayhay ayy hBl--hBrY hel --h‘o

To obtain the continuous scheme, we insert (1.11) into (1.10) to have

r-1 p-1 ) s—1 p-1 _ ) t-1 p-1 )
1 1 |
y(x)= AjiaX Yo+ hZZﬂj,HlX f.;+h Zzwj,mx Onsj
=0 i=0 =0 i=0 =0 =0

U
|_\

Bl 51 t-1 _
= {Z XjiaYnij +h2ﬁj,i+lfn+j +h22a)j,i+1gn+j}xl
j=0 j=0

=0

T
o

S gx
i~0 (1.13)

where:

{ZaJH—lyrH-J ZIB]H-]. n+ j +h Za)Jngnﬂ}
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From (1.13) we have

r-1 s—1 t-1
y(x) = {Z &Y+ 2 0BT+ D W0,
i—0 i—0 =0

r-1 s—1 t-1

Z;)aj,Zyn+j +Z;)hﬂj,2 fn+j +Z;)h2a)j,zgn+j’ (114)
1= 1= 1=

r-1 s-1 t-1 T

2o 1Yng + 2B fe + 200,10, Lxx?, . xP)

j=0 j=0 =0

Recall that p=r+s+t, such that (1.14) reduces to

r-1 s-1 -1
y(X) = {zo aj,r+s+t—l yn+j + Zo hﬁj,r+s+t—l fn+j + Z hzwj,r+s+t—1gn+j }(11 X, X2 ----- XHSH?l )T (115)
1= 1=

=0

Thus, expanding (1.15) fully we obtain the proposed continuous scheme as follows:

YX) = (Yoreeor Yooras Foveees Toveds gn,...,gmt_l)CT(l, x,xz,...,x”s*"l)T (1.16)
where T denotes transpose of the matrix C in (1.12) and the vector (1,x,x%,....x"*"%),

Remark 1.

We call D the multistep collocation and interpolation matrix which has a very simple
structure. From (1.8), the columns of D which give the continuous coefficients oj(x), Bj(x),
oj(x) can be obtain from the corresponding columns of C. As can be seen the entries of C are
the constant coefficients of the polynomial given in (1.11) which are to be determined. The
matrix C is the solution vector (output) and D is termed the data (input), which is assumed to
be non-singular for the existence of the inverse matrix C.

In the second-derivative methods, we see that not only the function f(x,y) is evaluated
at some intermediate points, but in addition the functions Df, D*f where Dis the differential
operator (see [14]). Hence, in addition to the computation of the f-values at the internal stages
in the standard Runge-Kutta methods, the modified methods involve computing g-values,
where f and g are as defined in (1.10).

According to [15] these methods can be practical if the costs of evaluating g are
comparable to those in evaluating f and can even be more efficient than the standard Runge-
Kutta methods if the number of function evaluations is fewer. It is convenient to rewrite the
coefficients of the defining formula (1.10) evaluated at some certain points in the block

matrix form as,

Y=e®y, +h(A® 1, )F(Y)+h2(A®1, B(Y), (1.17a)
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You = Yo +h0" ® 1, )F(Y)+h2(6" @1, J5(Y), (1.17b)
where A=[a;j]sxs, A=[4ij]sxs indicate the dependence of the stages on the derivatives found at

the other stages and b=[bi]sx1, b= [BiJ are vectors of quadrature weights showing how the

sx1
final result depends on the derivatives computed at the various stages, | is the identity matrix
of size equal to the differential equation system to be solved and N is the dimension of the
system. Also ® is the Kronecker product of two matrices. For simplicity, we write the method

in (1.17) as follows:

Y =y, +hAF(Y)+h?AG(Y), (1.18a)
Yo =Y, +hbTF(Y)+h2"G(Y), (1.18b)
and the block vectors in R*N are defined by
Y, f(Y,) g(Y,)
v=| " Fory=| ') cry=| 9 (1.19)
Y, f(Ys) g(Y;)

The coefficients of the implicit second-derivative Runge-Kutta collocation methods
can be conveniently represented more compactly in an extended partitioned Butcher Tableau,

of the form

N

A
'Sl

A

bT

C

(1.20)

where c=[1]s is the abscissae vectors which indicates the position within the step of the stage

values.

Specification of the implicit second derivative Runge-Kutta collocation
methods
A fourth-order implicit second derivative Runge-Kutta collocation method
In this section we develop the general form of conditions for the coefficients of the
implicit second-derivative Runge-Kutta collocation methods. To obtain the coefficients of the
first method, the matrix D in (1.8) takes the form,
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Lo x5 X
0 1 2., 32, 4c,
D=0 1 2, 3Cr?+1 4Cr?+1 (1.21)
o o0 2 6, 1x2,
0 0 2 6c,, 127

Inverting the matrix D in (1.21) once, we obtain the continuous scheme of the form in
(1.16) as follows

Y(X) =, (XY, +h[By () fry + B(X) Ty ]+ 02 [0, (X0, + @ (X)D,01] (1.22)
where

a,(x)=1

hﬁo(x){zux—xn)“ ~72h(x-x,)* +54h2(x—xn)2}

16h°®

hﬂl(x){—zux— X )* +72h(x — xn)iG—h§4h2(x— X )2 +16h°(x - xn)}

h2a, (x)= 9(x — x,)* — 28h(x - x,)° +30h?(x — x,)? —12h* (x - X,)
o 16h’

he, (x)= 9(x—x,)* —20h(x—x,)® +14h*(x — x,)* = 4h®*(x - x_)
B 16h’

To get the value of u in (1.21), we find the zero of the N™ degree Jacobi polynomial
(see, [16]) defined by

N _

PP =3 ()" X! (1.233)

i=1
where
N-1+1N+i+a+p .
.= i1, |=1,2,...,N .

Vi i i+ Vit (1.23b)

with ’Yo:l.

Next by substituting u = % into the continuous scheme (1.22) and evaluate at Xx=Xn+1
and X+, we obtain the following block hybrid discrete scheme, which can be applied

simultaneously as block method for dense output, if desired,

2

h [9 fn+u +7 fn+1]+ _[_ Oniw — gn+l] (1243.)

= + —
yn+l yn 16 16
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h h?
=y +——|[99f +45f . |+—|-43 -11 1.24b
yn+u yn 432 [ n+u n+1] 432 [ g n+u g n+1] ( )
If we convert the block hybrid discrete scheme (1.24(a-b)) to implicit second-
derivative Runge-Kutta collocation method and write the method in the form of (1.18) we

have the following

9 7 1 1
=y ,+h —=|F,+h — |F,-h* = |G, -h?| = |G 1.25
AN S AT EA R EAY 29
The internal stage values at the n™ step are calculated as,
Y=Y

11 5 43 11
Y, = hl == |F, +h| — |F, -h?| — |G, - h?| —— |G
2= Yna ¥ [48) 2 ¥ (48) 3 (432] 2 [432) :

9 7 1 1
Y,=Vy,,+hl — |F,+h — |F,—h*| = |G, —-h*| = |G
3= I (16} 2 (16) 3 (16] 2 (16] ’

with the stage derivatives as follows:
F = f(Xn—l +h(0), Yl)’

1
F2 = f(xnl + h[gj,Yz j,

F, = f(x,, +h@),Y,)
The coefficients of the implicit second-derivative Runge-Kutta collocation method
(1.25) can be conveniently represented more compactly in an extended partitioned Butcher

Tableau of the form in (1.20) as follows:

1 11 5  -43 -1

3 48 48 432 48

clala 1 9 7 -1 4
b T 16 16 16 16
9 7 -1 -1

16 16 16 16

A sixth-order implicit second derivative Runge-Kutta collocation method
Here we derive implicit second-derivative Runge-Kutta collocation method of higher
order for the numerical solution of stiff systems. The matrix D in (1.8) takes the following

form
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1 X, X2 x> X! X x°
0 1 2c,., 3c2, 4cl, 5ci, 6c,
o 1 2, 3¢, 4., 5¢c., 6c,
D-0 1 2, 3, 4, S, e, (1.26)
0 0 2 6¢c,., l12cZ, 20c’, 30c;,
0 0 2 6c,,, 12c’, 20c’. 30c:,
0 0 2 6¢c 12¢?, 20c?, 30c!

n+l n+l n+l n+l

where u and v are the zeros of p2(x)=0. Jacobi polynomial in (1.23) of degree 2 which are
valid in the interval [Xn,Xn+1]. Inverting the matrix in (1.26) once we obtain the continuous

scheme as follows:

y(X) = 0!0 (X)yn + h[ﬂo (X) fn+u +ﬁl(x) fn+v +ﬂ2 (X) fn+l]+ hz[a)o (X)gn+u + a)l(x)gn+v + 602 (X)gn+1] (127)
where

1600 10046 ) ¢ — (5232 + 48/B)hs * + (6336 + 7296 h2g

— (3586 + 9046 h¢* + (912 + 31846 h¢
216h°

(2400+3900f ); —(36048+10128+/6)h¢° + (35604 + 7569)n 2L

3904+ 7446 h* ¢ + (2568 - 40246 h* ¢
216(7 + 26 h°

hﬂl (X = (1

h
P 1080h*®

2500¢ ° (9600 + 30016 Ji¢® + (14325 +10501/6 h*¢ * -

e ()= (10400 + 135046 )’ + (3750 + 75048 ¢ — (600-+150MB h° .
o 1512+ 4326 h*

(x)= { 16000¢ ® +52320h¢ ° — 633602 * +35360h°¢ % —9120h*¢ 2 +1080h5¢ |

[(4200+1200(8 )¢ ° — 15264+ 41086 ¢ + (21042+ 51126 h*¢* |

—(13584+ 272416 °¢ + 4140+ 5406 h*¢* = (676+ 36V6 h°s

h? -
(x) 1296nh*

[4000¢°° —12480h¢° +14640h2¢* —8000h3¢ 2 + 2040h*¢ 2 —240h5§}

h2e, (x) =
@ (x) 2160h"

Evaluating the continuous scheme (1.27) at the points {Xn+1,Xn+u,Xn+v} We obtain the

block hybrid discrete scheme which can also be applied simultaneously as block method for

dense output, if desired,
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Yo=Y+ h [(80 5V6)f, ., +(80+516)f n+v+56fn+1] h* [(7 2J6)g,., ~(7+2V6)g,., —49, ]

Yoen = Yo t

2702000 460000 - 6812561, + (418528 —168467\/5 )f,., + (201472 - 334086 ), .|

h2

1.28
b [128675 - 277006 )g,., - (45299 + 69646 )g,., - (21704 - 34565 )g, ., | (1.28)

Yo =y +ﬁ (418528 + 1684676t ,, + 460000+ 68125161, , +(201472+ 334086t , |

N 27(:‘;000 (4529969646 )g.,., 128675+ 27700V6 )g,.., - (21704+345616)g,., |.

Writing the method in the formalism of (1.18) we have

~ 10 5V6 10 5V6 7 6 7 6 o 4
y”_y“1+h(27_216JF2+h(27 ij “(27] “[m‘ms G~ 216" 108 G“‘_h(zmje“ (1.29)
The internal stage values at the n™ step are calculated as,

Yl = yn—l
Y, =y + h(E‘Msz +h(13079 16846746 JFa N h( 6296 11646 JF“

135 4320 84375 2700000 84375 9375

L ( 5147 277\/_J h [ 45299 +1741\/€J(;3_h [ 2713 4\/_]64

108000 27000 2700000 675000 337500 3125

— +h[13079 +16847\/5 JFZ H{ 23 +109\/_ JFs H{ 6296 11646 ]H

+
84375 2700000 135 4320 84375 9375

_hz[ 45299 _1741\/€J62_h2[ 5147 +277\/€JGS_h2[ 2713 4\/5]64

+_
2700000 675000 108000 27000 337500 3125
Y, =Y, + 10 S\F F+ 10 5\@ F+}‘{ jF - — ! \F - +\E G, — h2(4JG4
27 216 27" 216 27 216 108 216 108 216
where the stage derivatives are as follows:

F, = f(x,, +h(0),Y,),

f[ _1+h(g—£]Y2],
5 10
F3=f( _1+h[3+\/_],Y3}

5 10

f(x,, +h@®),Y,)
We write the coefficients of the method in (1.29) in an extended partitioned Butcher
Tableau (1.20) as follows:

T
N
Il

M
I
Il

4-6 736-109/6 118528-1684646 629610446 —5147+1108/6 45299 — 69646 — 21704+3456,6
10 4320 2700000 84375 108000 2700000 2700000

4+.6 418528+16847/6 736+109/6 6296 +1044+/6 — 45299+ 6964/6 —5147-1108/6 - 21704+ 3456/6
10 2700000 4320 84375 2700000 108000 2700000
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1 80—516 80+5V6 56 ~7+2J6 —7-2J6 -4
216 216 216 216 216 216

80-516 80+5V6 56 ~7+2J6 ~7-2J6 -4

216 216 216 216 216 216

Analysis of the properties of the implicit SDRK collocation methods
Order, Consistency, Zero-Stability and Convergence of the Implicit SDRKCMs
With the multi-step collocation formula (1.10) we associate the linear difference
operator ¢ defined by:

f[y(x);h]=20a,-(x)y(x+jh)+hiosj(x)y'(x+jh)+h220m,-<x)y"(x+jh) (1.30)
where y(x) is an arbitr;ry function, continljg)usly differentiable 0; [Xo, T]. Following [17], we
can write the terms in (1.30) as a Taylor series expansion about the point x to obtain the
expression,

2[y(x);h] = C,y(x) + C,hy'(X) + C,h?y"(X) +---+ C,h Py (x) 4., (1.31)
where the constant coefficients Cp, p = 0,1,2,... are given as follows:

Co :Z“j
=0
Cl:Zjaj_Zﬂj

1

C, = 2'(2104 —22 iB; - JZtOwJJ

1< . 2y )
- — jPa - "B "o j p=34,..
D Y )
According to [17], the multlstep collocation formula (1.10) has order p if
([y(x):h] = o(h p”)co =C,=-=C,=0, C,,,#0 (1.32)
Therefore, C,+1 is the error constant and C,.h”y®*Y(x,) is the principal local
truncation error at the point x, (see [18]). Hence from our calculation the order and error
constants for the constructed methods are presented in Table 1. It is clear from the Table that
the implicit second-derivative Runge-Kutta collocation methods are of high-order. They have
smaller error constants and hence more accurate than the conventional Radau-Runge-Kutta

methods of the same order of convergence.
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Table 1. Order and error constants of the implicit SDRK collocation methods
Method Order | Error constant

Method (1.25) | P=4 |C5=9.8765x 107

Method (1.29) | P=6 |C,=2.5714x 10"

Definition 1.3: Consistency
A linear multistep method is said to be consistent if the order of the method is greater
or equal to one, that is if p>1 (see, [17]).(i) p(1)=0 and(ii)p’(1)=c(1), where p(z) and o(z) are
respectively the 1 and 2" characteristic polynomials.
From Table 1 and definition 1.3, we can attest that the implicit second-derivative
Runge-Kutta collocation methods are consistent.

Definition 1.4: Zero-stability
A linear multistep method is said to be zero-stable if the roots:

p(A) = det{zk: A“)}tk‘i} =0
i=0
A<t =1k
]=1
see [17].

Based on definition 1.4, the newly constructed implicit second-derivative Runge-Kutta

collocation methods are zero-stable.

Definition 1.5: Convergence
The necessary and sufficient conditions for a linear multistep method to be convergent
are that it must be consistent and zero-stable (see [10]). Hence, from definitions 1.3 and 1.4
the implicit second-derivative Runge-Kutta collocation methods are convergent.

Regions of absolute stability of the implicit SDRK collocation methods
To study the stability properties of the implicit second-derivative Runge-Kutta
collocation methods we reformulate them as general linear methods (see [19]). Hence, we use
the notations introduced by [20] which a general linear method is represented by the

partitioned (s+r)x(s+r) matrix, (containing A, U, B, V),

YO [Ajunebe)]
N I Y T (1.333)
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where
Y] [y v "
] [n-1] | FOY L e | v
yinl _ Y2: yil yz: Fvi)= 32 yn=
' ' o} y
v |yl | f(ve™)
A_{o o} U I 0 O A B | u e-u
A B 0 u e-u| B=| 0 0 V= 0 0 I
NI, 0 0 1-6

and e=[1,...,1]'eR. Hence (1.33a) takes the form

Yl[n]_ [hf (Yl[n])_
v, hf (v,"))

v {A K } hf (Y[

~ B‘—V i (1.33b)
v yi
ol L

where r denotes quantities as output from each step and input to the next step and s denotes
stage values used in the computation of the step yi,...,ys. The coefficients of these matrices
indicate the relationship between the various numerical quantities that arise in the
computation of stability regions. The elements of the matrices A, U, B and V are substituted
into the stability matrix. In the sense of [21] we apply (1.33) to the linear test equation
y’=Ay,x>0 and AeC but for the second-derivative high-order methods we use y’’=A2y which
leads to the recurrence relation y™™ =M (z)y!™, n=1,2,...,N-1, z=\h, where the stability matrix
M(z) is defined by

M(z) =V +zB(1-zA)'U (1.34)

We also define the stability polynomial p(n,z) by the relation

p(n,2) = det(yl =M (2)) (1.35)

and the absolute stability region R of the method is given by

R=xeC :p(n,z):1:>|n|31

To compute the regions of absolute stability we substitute the elements of the matrices
A, U, B and V into the stability function (1.34) and finally into the stability polynomial (1.35)
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of the methods, which is plotted to produce the required graphs of the absolute stability

regions of the methods as shown in Figure 1.

Method(1.29) is A( «)-stable
Figure 1. Regions of absolute stability of the implicit SDRK collocation methods

The methods constructed in this paper are A(a)-stable, since their regions consist of
the complex plane outside the enclosed Figures, with only very small portion inside the left

hand-half plane.
Numerical experiments

Our aim in this section is to compare the performance of the new methods with other

methods of the conventional type (Radau methods) which are widely known to be among the
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most efficient methods for the numerical solution of stiff ordinary differential equations.
Therefore, we report the numerical results obtained from the applications of the new implicit
second-derivative Runge-Kutta collocation methods. We present the computed results in the
formalism of [22]. In the presentation we use nfe to denote the number of function evaluations
and Ext to indicate the exact solutions.

Example 1. Consider the stiff system of first order differential equation,

yi(X) ==y, (x) =15y, (x) +15e™",  y,(0) =1,

y;(x) = 15y1(x) - yz(x) —15e™", Yo (0) =1
The exact solution is
y1(x) = exp( —x),
y2(x) =exp(—x) .
This system has eigenvalues of large modulus lying close to the imaginary axis -1+15i.

We solve the system in the range of [0, 50] with h = 0.1and the results obtained are shown in
Table 2. In this example we compare the results from the two new methods side by side in the
Table. The solution curves obtained are compared with the exact (Ext) solutions in Figure 2.
Thus, for fair comparison see the results from the third derivative methods of [23] Table 4
page 447 and results of [24] Table 2 page 166.

Table 2. Absolute errors in the numerical integration of example 1
X |Yi Method (1.25) Method (1.29)

5

Y1

3.46368813864673 x107

2.16834805259769 x107

Yo

3.94364780750056 x10™

6.23671456063679 x10™

50

Yy

1.49495218771792 x10*

7.38442455972734 x10°

Y2

4.86742095474412 x10°°

2.19934956374418 x107°

150

Y1

1.85517639473028 x10™

1.20177414793520 x10™

Y2

1.45786198883123 x10°®

7.02697714351372 x10°

250

Yy

1.25223273382179 x10°™"

1.99479371074799 x10™

Y2

8.66743589934986 x10%

3.55424556071686 x10%

500

Y1

1.64891543846432 x10%

2.32684011997371 x10*

Yo

4.31480861603385 x10*

3.70791674680754 x10
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Figure 2. Graphical plots of example 1 using Second Derivative Runge-Kutta Collocation
methods: a) Solution curve of example 1 using method (1.25), with nfe =500; b) Solution

curve of example 1 using method (1.29), with nfe =500

Example 2: The second example is a stiff linear system of equation, see [25],

y{(X)} _
Y>(X)

|

-2
998

1

]

¥1(X)

The exact solution is given by

Y, (x)
Y, (X)

)|

We solve this system in the range [0, 10]. In this example we also compare the results

from the two new methods in Table 3 and the efficiency curves obtained are compared with

2 exp( —x) + sin( x)
2 exp( —x) + cos( x)

|

the exact solutions in Figure 3.

2sin(x)
Y, (X) " {999(cos(x) -~ sin(x))}

Y (0)}
y,(0)

s

Table 3. Absolute errors in the numerical integration of example 2

X |Yi

Method (1.25)

Method (1.29)

5 [

7.00794977603891 x 107

2.22044604925031 x 107

Yo

7.04547531427124 x 10

0

50 Yy

2.27042828981894 x 1071

1.11022302462516 x 107

Y2

2.27533547558778 x 101

1.11022302462516 x 107

Y1

7.35667637918880 x 107

4.44089209850063 x 107

150 Y,

7.35377314597940 x 10

3.33066907387547 x 10°

250 Y2

4.08534317486442 x 101

1.11022302462516 x 10

Yo

4.08287292863463 x 10!

1.11022302462516 x 10

500 |V2

6.84553524976650 x 107

5.55111512312578 x 10°

Y2

6.84068357514889 x 10

5.55111512312578 x 10
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Figure 3. Graphical plots of example 2 using second derivative Runge-Kutta collocation
methods: a) Solution curve of example 2 using method (1.25), with nfe =500;b) Solution curve
of example 2 using method (1.29), with nfe =500

Example 3: The third test example is a stiff problem taken from [25].

Yy, (X) 42,2 50.1 -42.1] y,(x) y,(0) 1
y,(x)|=|—-66.1 =58 58.1 | vy,(x)|, y,(0)|= 1|0
Y5 (X) 26.1 421 -34 | y,(x) y,(0) 2

The exact solution is,

Y, (X) = exp(0.1x)sin8x +exp(-50x)
Y, (x) = exp(0.1x) cos8x — exp(-50x)
Y, (X) = exp(0.1x)(cos8x +sin 8x) + exp(—50x)

The eigenvalues of the system are A;=-50 and A, 3 = 0.1£8i. The computed solutions of
the example within the interval of [0, 1] are presented in Table 4 and the graphical plots are
shown in Figure 4.

Example 4. We consider another linear problem which is particularly referred to by
[27] as a troublesome problem for some existing methods because the eigenvalues of this
problem are lying close to the imaginary axis where some stiff integrators were known to be
inefficient. The eigenvalues of the Jacobian are A1, = -10+£100i, A3 = -4, Ay =-1, A5 =-0.5and
As =-0.1.

yi(x)] [-10 100 0 0 0 0 w0 [vuO®] [1
y,(x)| |-100 -10 O 0 0 0 Y, (X) y, (0) 1
yi )| j0 0 -4 0 0 0 |y,(x y;(0)| |1
yi(x)| |0 0 0 -1 0 0 ||y, y,(0)| |1
Ys (X) 0 0 0 0 -05 0 Ye (X) y:(0) 1
Lye(x)] [0 0 0 0 0 —0.1] ys (%) ] L Ys(0)] [1]

60



@

Leonardo Journal of Sciences
ISSN 1583-0233

Issue 28, January-June 2016
p. 43-66

1.5¢

1

Table 4. Absolute errors in the numerical integration of example 3

X

i | Radau 1A method [20, 26]

Method (1.29)

5

3.70353636647280 x 10™°

3.12638803734444 x 107

3.70363018031838 x 107

3.12583292583213 x 107

3.70344199751571 x 107

3.12638803734444 x 10

50

4.98715513330694 x 10™*

4.27435864480685 x 10

5.00358643407139 x 10

4.27435864480685 x 10

4.97826224687969 x 107

4.21884749357559 x 107

150

2.59459120854899 x 107

8.88178419700125 x 107

2.37143638059933 x 10"

5.99520433297585 x 107

1.55916946020795 x 10

6.77236045021345 x 107"

250

4.30766533554561 x 10

7.10542735760101 x 107

4.39759340054025 x 107

2.88657986402541 x 107

8.70636895911048 x 10

4.44089209850063 x 107

500

1.29318777908338 x 10

5.99520433297585 x 10

9.13435993510348 x 10

8.93729534823251 x 107"

1.20203846876166 x 10™*?

3.55271367880050 x 10

2
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Figure 4. Graphical plots of example 3 using Radau I1A method [20,26] and SDRKC method:
a) Solution curve of example 3 using Radau 1A method [20,26], with nfe =500, b) Solution
curve of example 3 using method (1.29), with nfe =500

We solve this problem in the range 0 < x < 1. The computed solutions are shown in

Table 5, while the graphical plots are displayed in Figure 5. Though, only the first four

components {y1,Y2,Y3,y4} are shown in the Table of values.
Example 5: HIRES

The High irradiance responses problem consists of a stiff system of 8 nonlinear

ordinary differential equation which originates from plant physiology and describes how light

is involved in morphogenesis.

It explains the high irradiance responses of photo

morphogenesis on the basis of phytochrome by means of a chemical reaction involving eight

reactants in the form of initial value problem see [28,29].

61



Application of second derivative Runge-Kutta collocation methods to stiff systems of initial value problems
Samaila MARKUS and Dauda G. YAKUBU

Table 5. Absolute errors in the numerical integration of example 5

-1.5

X

i | Radau 11A method [20, 26]

Method (1.29)

3.83760043742853 x 107

5.84532422465145 x 107

2.90659031079721 x 10°®

5.86538248525947 x 107

2.22044604925031 x 107

0

0

1.11022302462516 x 10°

50

2.32388491339108 x 10”

1.51528067870998 x 10™°

5.72332533588238 x 10°

3.82774117957396 x 1077

1.55431223447522 x 107

3.33066907387547 x 107°

1.11022302462516 x 10

4.44089209850063 x 107°

250

1.91869619220464 x 10®

1.42258618079927 x 10!

1.09619847643572 x 107

3.52476554887904 x 107

1.38777878078145 x 107

1.66533453693773 x 10

7.77156117237610 x 107

2.22044604925031 x 107

500

2.28890865933633 x 107

2.65111307337423 x 107

1.86748006761241 x 10™%°

4.33490943878637 x 10

3.57353036051222 x 107

6.93889390390723 x 107

4.44089209850063 x 107°

y(6)
Y(1)EXt |
— y(2)Ext
— y(3)Ext
y(4)Ext
— y(5)Ext
y(6)Ext

——y(1)
===y@
----- y(3)
== y@)
===y(®)
MO
y(1)Ext
— y(2Ext
— y(3)Ext
— y(4Ext
— y(5)Ext
y(B)Ext

I I I I I I I I I 15 L I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1 b) 0 01 02 03 04 05 06 07 08 09 1

a)

Figure 5. Graphical plots of example 4 using Radau I1A method [20,26] and SDRKC method:
a) Solution curve of example 4 using Radau 1A method [20,26], with nfe =500, b) Solution
curve of example 4 using method (1.29), with nfe =500

y; =-1.71y, +0.43y, +8.32y, +0.0007, y:(0) =1
y, =1.71y, —-8.75y,, y,(0) =0,
y; =—10.03y, +0.43y, +0.035y,, y;(0) =0,
y, =8.32y, +1.71y, -1.12y,, y,(0) =0,
yi = —1.745y, +0.43y, +0.43y,, ys(0) =0,
y, =—-280y,Y, +0.69y, +1.71y, — 0.43y, +0.69y., ¥6(0) =0,
y, = 280y,Y, —1.81y,, y;(0) =0,
V= -y, Y, (0) = 0.0057.
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We solve the problem in the interval [0, 1] and compare the graphical plots with the
ODE code of Matlab in Figure 6.

1.6 T T T T T T T T T -

14+

1.2¢

1

0.8

0.6

0.4+

0.2

0

a) 0 o1 02 03 04 05 06 07 08 09 1[)

Figure 6. Graphical plots of example 5 using SDRKCM and the ODE code of Matlab: a)
Solution curve of example 5 using method (1.25), with nfe = 500, b) Solution curve of
example 5 using method (1.29), with nfe = 500

Concluding remarks

In conclusion, the methods so derived in this paper so far have been to introduce a
class of implicit second-derivative Runge-Kutta collocation methods suitable for the
approximate numerical integration of systems, particularly stiff systems of ordinary
differential equations. The derived methods proved an efficient way to find numerical
solution to systems of initial value problems when the second derivative terms are cheap to
evaluate. We present two new methods of orders four and six that are intended for accurate
integration of stiff systems of equations. We have also compared the numerical solution
obtained with the conventional Radau Runge-Kutta methods which are widely recognized to
be among the most efficient methods for stiff systems [3, 20, 26]. The solution curves are also

compared with the exact solutions graphically in Figures.
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