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Abstract 

In this paper we consider the construction of implicit second derivative 

Runge-Kutta collocation methods designed for the continuous numerical 

solution of stiff systems of first order initial value problems in ordinary 

differential equations. These methods are obtained based on the multistep 

collocation technique, which are shown to be convergent, with improved 

regions of absolute stability. Although the implementation of the second 

derivative Runge-Kutta collocation methods remains iterative due to the 

implicit nature of the methods, the advantage gained makes them suitable for 

solving stiff systems with eigenvalues of large modulus lying close to the 

imaginary axis. Some absolute stability characteristics and order of accuracy 

of the methods are studied. Finally, we show two possible ways of 

implementing the methods and compare them on some numerical examples 

found in the literature to demonstrate the high order of accuracy and reliability 

of the methods. 

Keywords 

Block hybrid schema; Continuous schema; Multistep collocation formula; 
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Introduction 

 
In the past few decades many authors proposed different numerical integration 

methods to obtain more accurate approximate solution to ordinary differential equations 

(ODEs), especially stiff systems of initial value problems in ordinary differential equations. 

However, extensive numerical experiments have shown that implicit integrators have the 

numerical superiority over the explicit methods when applied to solve stiff systems of ODEs 

[1-4]. In particular, implicit Runge-Kutta methods play an important role in the numerical 

solution of stiff systems of ODEs, because they have good stability properties and high order 

of convergence. In this paper we derive implicit second-derivative Runge-Kutta (SDRK) 

collocation methods designed for the continuous numerical solution of stiff systems of initial 

value problems in ODEs of the form 

],[,)()),(,( 000 Txxyxyxyxf
dx
dy

∈==
 

(1.1)

Here the unknown function y is a mapping y:[xo,T]→Rd and the right-hand side 

function f is f:[x0,T]xRd→Rd which is assumed to be sufficiently smooth, y0→Rd is the given 

initial value and dy/dx is the differential operator. Let h>0 be a constant step size and we 

define the grid by xn=x0+nh, n=0,1,2,..,N where Nh=T-x0and a set of uniformly spaced points 

on the integration interval is defined by x0<x1<x2<…..<xn+1=T The main reason for 

considering the second derivative terms is to derive a set of methods which are suitable for the 

continuous numerical solution of stiff differential systems with Jacobians having large 

eigenvalues lying close to the imaginary axis. However, for some important classes of 

problems it is necessary, for the sake of efficiency, to allow second-derivative integration 

methods to be used (see [5-8]) and in this case existing numerical methods tend to be much 

less satisfactory. Further, we will examine in detail the problem of implementing the second-

derivative Runge-Kutta integration methods with fixed time steps. We show that, even though 

enormous gains in efficiency can be achieved if the methods are implemented in an 

appropriate way, there are still some important practical problems to be overcome, for 

example, the calculation of the second derivative terms in the methods which costs little 

higher than the first derivative terms [9]. 

There are several eminent authors who derived methods that can handle non-stiff, stiff, 

periodic and oscillatory problems handy [2-4,9], but little seems to have been done in deriving 

implicit second-derivative Runge-Kutta collocation methods with minimal function 
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evaluations, uniformly accurate orders and maximal gain in efficiency. Hence, these motivate 

us to consider the construction of the implicit second derivative Runge-Kutta collocation 

methods in this paper. 

Definition 1.1: A numerical method is said to be A(α)-stable α∈(0,π/2) if its region of 

absolute stability contains the infinite wedge Wα where 

})arg(:{ αλπαλα <−<−= hhW  see [10]. 

Theorem 1.1: If f satisfies Lipschitz condition with constant L then the initial value 

problem y’(x)=f(x,y(x)), y(x0)=y0 possesses a unique solution on the interval [x0, T] see [11]. 

Definition 1.2: A solution y(x) of (1.1) is said to be stable if given any ∈>0 there is 

δ>0such that any other solution y(x) of (1.1) which satisfies 

δ≤− )(ˆ)( ayay  (1.2a)

also satisfies 

≤∈− )(ˆ)( xyxy  (1.2b)

for all x>a. 

The solution y(x) is asymptotically stable if in addition to (1.2b) as x→∞. 

 

 

Material and method 

 

The implicit second derivative Runge-Kutta collocation methods  

In this section our objective is to describe the construction of the implicit second-

derivative Runge-Kutta collocation methods based on the multistep collocation technique. In 

this regard we seek an approximate solution to the exact solution of (1.1) by the interpolant of 

the form 

∑
−

=

−
− =++++=

1

0

1
1

2
210)(

p

i

i
i

p
p xxxxxy ααααα L (1.3)

which is twice continuously differentiable. We set the sum r+s+t to be equal to p so as to be 

able to determine {αi} in (1.3). In this formulation r denotes the number of interpolation 

points used and s>0, t>0are distinct collocation points. Interpolating (1.3) at the points {xn+j}, 

and collocating y’(x) and y”(x) at the points {cn+j} we obtain the following system of 

equations 
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)1,,2,1,0(,)( −== ++ rjyxy jnjn K  (1.4)

)1,,2,1,0(,)( −==′ ++ sjfcy jnjn K  (1.5)

.)1,,2,1,0(,)( −==′′ ++ tjgcy jnjn K (1.6)

In fact equations (1.4) to (1.6) can be expressed in the matrix-vector form as 

yD =α  (1.7)

where the p-square matrix D, p- vectors α and y are defined as follows: 
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(1.8)

( ) ( )Ttnnsnnrnn
T

p yyyyyyy 1111,210 ,,,,,,,,,,,,, −+−+−+− ′′′′′′== KKKK ααααα  
where D’=(p-1) and D’’=(p-1)(p-2) in (1.8) represent the first and second derivatives 

respectively and correspond to the differentiation with respect to x. Similar to the 

Vandermonde matrix, the matrix D in (1.7) is non-singular. Consequently, equation (1.7) has 

the unique solution given by  

α=Cy where C=D-1         (1.9) 

Rearranging equations (1.7) to (1.9) we obtain the multistep collocation formula of the 

type in [12] which was a generalization of [13] and here we extend to second derivative as 

follows. 

jn

t

j
jjn

s

j
jjn

r

j
j gxhfxhyxxy +

−

=
+

−

=
+

−

=
∑∑∑ ++= )()()()(

1

0

2
1

0

1

0
ωβα (1.10)

where: 

( )jhxyy njn +≈+  
( )( )jhxyjhxff nnjn ++≡+ ,  
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( )( )
jn

jn
jn yy

xx

dx
xyxdfg
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+
+ =

=
≡
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Here αj(x), βj(x), ωj(x) are continuous coefficients of the method which are to be 

determined. They are assumed polynomials of the form  

i
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(1.11)

The numerical constant coefficients αj,i+1, βj,i+1, ωj,i+1 in (1.11) are to be determined. 

In fact, the above coefficients can be obtained from the components of the matrix D-1. 

That is, if the identity (1.12) holds. Actual evaluations of the matrices C and D are carried out 

with a computer algebra system, for example, Maple, to determine the constant coefficients 

αj,i+1, βj,i+1, and ωj,i+1 in (1.11). 
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(1.12)

To obtain the continuous scheme, we insert (1.11) into (1.10) to have 
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where: 
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From (1.13) we have 
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(1.14)

Recall that p=r+s+t, such that (1.14) reduces to 
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(1.15)

Thus, expanding (1.15) fully we obtain the proposed continuous scheme as follows: 
( )TtsrT

tnnsnnrnn xxxCggffyyxy 12
111 ,,,,1),,,,,,,,()( −++
−+−+−+= KKKK             (1.16) 

where T denotes transpose of the matrix C in (1.12) and the vector (1,x,x2,…,xr+s+t-1). 
 

Remark 1. 

We call D the multistep collocation and interpolation matrix which has a very simple 

structure. From (1.8), the columns of D which give the continuous coefficients αj(x), βj(x), 

ωj(x) can be obtain from the corresponding columns of C. As can be seen the entries of C are 

the constant coefficients of the polynomial given in (1.11) which are to be determined. The 

matrix C is the solution vector (output) and D is termed the data (input), which is assumed to 

be non-singular for the existence of the inverse matrix C. 

In the second-derivative methods, we see that not only the function f(x,y) is evaluated 

at some intermediate points, but in addition the functions Df, D2f where Dis the differential 

operator (see [14]). Hence, in addition to the computation of the f-values at the internal stages 

in the standard Runge-Kutta methods, the modified methods involve computing g-values, 

where f and g are as defined in (1.10). 

According to [15] these methods can be practical if the costs of evaluating g are 

comparable to those in evaluating f and can even be more efficient than the standard Runge-

Kutta methods if the number of function evaluations is fewer. It is convenient to rewrite the 

coefficients of the defining formula (1.10) evaluated at some certain points in the block 

matrix form as, 

( ) ( ) ( ) ( ),ˆ2 YGIAhYFIAhyeY NNn ⊗+⊗+⊗= (1.17a)
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( ) ( ) ( ) ( ),ˆ2
1 YGIbhYFIbhyy N

T
N

T
nn ⊗+⊗+=+  (1.17b)

where A=[aij]sxs, Â=[âij]sxs  indicate the dependence of the stages on the derivatives found at 

the other stages and b=[bi]sx1, [ ] 1
ˆˆ

×= sibb are vectors of quadrature weights showing how the 

final result depends on the derivatives computed at the various stages, I is the identity matrix 

of size equal to the differential equation system to be solved and N is the dimension of the 

system. Also ⊗ is the Kronecker product of two matrices. For simplicity, we write the method 

in (1.17) as follows: 

( ) ( ,ˆ2 YGAhYhAFyY n ++= )  (1.18a)

( ) ( ),ˆ2
1 YGbhYFhbyy TT

nn ++=+  (1.18b)

and the block vectors in RsN are defined by 
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(1.19)

The coefficients of the implicit second-derivative Runge-Kutta collocation methods 

can be conveniently represented more compactly in an extended partitioned Butcher Tableau, 

of the form  

TT b
A

b
Ac

ˆ
ˆ

 
(1.20)

where c=[1]sx1 is the abscissae vectors which indicates the position within the step of the stage 

values. 

 
 

Specification of the implicit second derivative Runge-Kutta collocation 

methods 

A fourth-order implicit second derivative Runge-Kutta collocation method 

In this section we develop the general form of conditions for the coefficients of the 

implicit second-derivative Runge-Kutta collocation methods. To obtain the coefficients of the 

first method, the matrix D in (1.8) takes the form, 
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Inverting the matrix D in (1.21) once, we obtain the continuous scheme of the form in 

(1.16) as follows 
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To get the value of u in (1.21), we find the zero of the Nth degree Jacobi polynomial 

(see, [16]) defined by  
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where 
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with γ0=1. 

Next by substituting u = ⅓ into the continuous scheme (1.22) and evaluate at x=xn+1 

and xn+u we obtain the following block hybrid discrete scheme, which can be applied 

simultaneously as block method for dense output, if desired, 

[ ] [ ]1

2

11 16
79

16 +++++ −−+++= nunnunnn gghffhyy
 

(1.24a)
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[ ] [ 1
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1 1143
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If we convert the block hybrid discrete scheme (1.24(a-b)) to implicit second-

derivative Runge-Kutta collocation method and write the method in the form of (1.18) we 

have the following 
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The internal stage values at the nth step are calculated as, 
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with the stage derivatives as follows: 
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The coefficients of the implicit second-derivative Runge-Kutta collocation method 

(1.25) can be conveniently represented more compactly in an extended partitioned Butcher 

Tableau of the form in (1.20) as follows: 
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A sixth-order implicit second derivative Runge-Kutta collocation method 

Here we derive implicit second-derivative Runge-Kutta collocation method of higher 

order for the numerical solution of stiff systems. The matrix D in (1.8) takes the following 

form  
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where u and v are the zeros of p2(x)=0. Jacobi polynomial in (1.23) of degree which are 

valid in the interval [xn,xn+1]. Inverting the matrix in (1.26) once we obtain the continuous 

scheme as follows: 
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Evaluating the continuous scheme (1.27) at the points {xn+1,xn+u,xn+v} we obtain the 

block hybrid discrete scheme which can also be applied simultaneously as block method for 

dense output, if desired, 
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Writing the method in the formalism of (1.18) we have 
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The internal stage values at the nth step are calculated as, 
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where the stage derivatives are as follows: 
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We write the coefficients of the method in (1.29) in an extended partitioned Butcher 

Tableau (1.20) as follows: 
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Analysis of the properties of the implicit SDRK collocation methods 

Order, Consistency, Zero-Stability and Convergence of the Implicit SDRKCMs 

With the multi-step collocation formula (1.10) we associate the linear difference 

operator  defined by: l
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where y(x) is an arbitrary function, continuously differentiable on [x0, T]. Following [17], we 

can write the terms in (1.30) as a Taylor series expansion about the point x to obtain the 

expression, 
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where the constant coefficients Cp, p = 0,1,2,… are given as follows: 
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According to [17], the multistep collocation formula (1.10) has order p if  

( )1]);([ +Ο= phhxyl 0,0 110 ≠==== +pp CCCC L  (1.32)
Therefore, Cp+1 is the error constant and Cp+1hp+1y(p+1)(xn) is the principal local 

truncation error at the point xn (see [18]). Hence from our calculation the order and error 

constants for the constructed methods are presented in Table 1. It is clear from the Table that 

the implicit second-derivative Runge-Kutta collocation methods are of high-order. They have 

smaller error constants and hence more accurate than the conventional Radau-Runge-Kutta 

methods of the same order of convergence. 
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Table 1. Order and error constants of the implicit SDRK collocation methods 
Method Order Error constant 

Method (1.25) P=4 C5=9.8765× 10-3

Method (1.29) P=6 C7=2.5714× 10-4

 
Definition 1.3: Consistency 

A linear multistep method is said to be consistent if the order of the method is greater 

or equal to one, that is if p>1 (see, [17]).(i) ρ(1)=0 and(ii)ρ’(1)=σ(1), where ρ(z) and σ(z) are 

respectively the 1st and 2nd characteristic polynomials.  

From Table 1 and definition 1.3, we can attest that the implicit second-derivative 

Runge-Kutta collocation methods are consistent. 

 
Definition 1.4: Zero-stability  

A linear multistep method is said to be zero-stable if the roots: 

0det)(
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 see [17].  

Based on definition 1.4, the newly constructed implicit second-derivative Runge-Kutta 

collocation methods are zero-stable. 

 

Definition 1.5: Convergence 

The necessary and sufficient conditions for a linear multistep method to be convergent 

are that it must be consistent and zero-stable (see [10]). Hence, from definitions 1.3 and 1.4 

the implicit second-derivative Runge-Kutta collocation methods are convergent. 

 
Regions of absolute stability of the implicit SDRK collocation methods 

To study the stability properties of the implicit second-derivative Runge-Kutta 

collocation methods we reformulate them as general linear methods (see [19]). Hence, we use 

the notations introduced by [20] which a general linear method is represented by the 

partitioned (s+r)×(s+r)  matrix, (containing A, U, B, V),  
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where 
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and e=[1,…,1]t∈R. Hence (1.33a) takes the form  
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 (1.33b)

where r denotes quantities as output from each step and input to the next step and s denotes 

stage values used in the computation of the step y1,…,ys. The coefficients of these matrices 

indicate the relationship between the various numerical quantities that arise in the 

computation of stability regions. The elements of the matrices A, U, B and V are substituted 

into the stability matrix. In the sense of [21] we apply (1.33) to the linear test equation 

y’=λy,x>0 and λ∈C but for the second-derivative high-order methods we use y’’=λ2y which 

leads to the recurrence relation y[n+1]=M(z)y[n], n=1,2,…,N-1, z=λh, where the stability matrix 

M(z) is defined by 

UzAzBVzM 1)1()( −−+=  (1.34)

We also define the stability polynomial p(η,z) by the relation 

( ))(det),( zMIz −= ηηρ  (1.35)

and the absolute stability region ℜ of the method is given by 

11 ≤η⇒=ηρ∈=ℜ )z,(:Cx  

To compute the regions of absolute stability we substitute the elements of the matrices 

A, U, B and V into the stability function (1.34) and finally into the stability polynomial (1.35) 
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of the methods, which is plotted to produce the required graphs of the absolute stability 

regions of the methods as shown in Figure 1.  
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Method (1.25) is A(α )-stable 
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Method(1.29) is A(α )-stable 

Figure 1. Regions of absolute stability of the implicit SDRK collocation methods 
 

The methods constructed in this paper are A(α)-stable, since their regions consist of 

the complex plane outside the enclosed Figures, with only very small portion inside the left 

hand-half plane. 

 

Numerical experiments 

Our aim in this section is to compare the performance of the new methods with other 

methods of the conventional type (Radau methods) which are widely known to be among the 
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most efficient methods for the numerical solution of stiff ordinary differential equations. 

Therefore, we report the numerical results obtained from the applications of the new implicit 

second-derivative Runge-Kutta collocation methods. We present the computed results in the 

formalism of [22]. In the presentation we use nfe to denote the number of function evaluations 

and Ext to indicate the exact solutions. 

Example 1. Consider the stiff system of first order differential equation, 

.1)0(,15)()(15)(

,1)0(,15)(15)()(

2212

1211

=−−=′

=+−−=′
−

−

yexyxyxy

yexyxyxy
x

x

 

The exact solution is  

.)exp()(
),exp()(

2

1

xxy
xxy

−=
−=

 

This system has eigenvalues of large modulus lying close to the imaginary axis -1±15i. 

We solve the system in the range of [0, 50] with h = 0.1and the results obtained are shown in 

Table 2. In this example we compare the results from the two new methods side by side in the 

Table. The solution curves obtained are compared with the exact (Ext) solutions in Figure 2. 

Thus, for fair comparison see the results from the third derivative methods of [23] Table 4 

page 447 and results of [24] Table 2 page 166. 

 

Table 2. Absolute errors in the numerical integration of example 1 
x Yi Method (1.25) Method (1.29) 

Y1 3.46368813864673 ×10-3 2.16834805259769 ×10-3 5 Y2 3.94364780750056 ×10-4 6.23671456063679 ×10-4 
Y1 1.49495218771792 ×10-4 7.38442455972734 ×10-5 50 Y2 4.86742095474412 ×10-9 2.19934956374418 ×10-9 
Y1 1.85517639473028 ×10-4 1.20177414793520 ×10-4 150 Y2 1.45786198883123 ×10-8 7.02697714351372 ×10-9 
Y1 1.25223273382179 ×10-13 1.99479371074799 ×10-14 250 Y2 8.66743589934986 ×10-13 3.55424556071686 ×10-13 
Y1 1.64891543846432 ×10-23 2.32684011997371 ×10-24 500 Y2 4.31480861603385 ×10-24 3.70791674680754 ×10-24 
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Figure 2. Graphical plots of example 1 using Second Derivative Runge-Kutta Collocation 
methods: a) Solution curve of example 1 using method (1.25), with nfe =500; b) Solution 

curve of example 1 using method (1.29), with nfe =500 

 

Example 2: The second example is a stiff linear system of equation, see [25],  
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The exact solution is given by  
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We solve this system in the range [0, 10]. In this example we also compare the results 

from the two new methods in Table 3 and the efficiency curves obtained are compared with 

the exact solutions in Figure 3.  

 
Table 3. Absolute errors in the numerical integration of example 2 

x Yi Method (1.25) Method (1.29) 
Y1 7.00794977603891 × 10-12 2.22044604925031 × 10-16 5 Y2 7.04547531427124 × 10-12 0 
Y1 2.27042828981894 × 10-11 1.11022302462516 × 10-15 50 Y2 2.27533547558778 × 10-11 1.11022302462516 × 10-15 
Y1 7.35667637918880 × 10-11 4.44089209850063 × 10-16 150 Y2 7.35377314597940 × 10-11 3.33066907387547 × 10-16 
Y1 4.08534317486442 × 10-11 1.11022302462516 × 10-16 250 Y2 4.08287292863463 × 10-11 1.11022302462516 × 10-16 
Y1 6.84553524976650 × 10-11 5.55111512312578 × 10-16 500 Y2 6.84068357514889 × 10-11 5.55111512312578 × 10-16 
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Figure 3. Graphical plots of example 2 using second derivative Runge-Kutta collocation 
methods: a) Solution curve of example 2 using method (1.25), with nfe =500;b) Solution curve 

of example 2 using method (1.29), with nfe =500 
 

Example 3: The third test example is a stiff problem taken from [25]. 
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The exact solution is, 
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The eigenvalues of the system are λ1=-50 and λ2,3 = 0.1±8i. The computed solutions of 

the example within the interval of [0, 1] are presented in Table 4 and the graphical plots are 

shown in Figure 4. 

Example 4: We consider another linear problem which is particularly referred to by 

[27] as a troublesome problem for some existing methods because the eigenvalues of this 

problem are lying close to the imaginary axis where some stiff integrators were known to be 

inefficient. The eigenvalues of the Jacobian are λ1,2 = -10±100i, λ3 = -4, λ4 = -1, λ5  = -0.5 and 

λ6 = -0.1. 
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Table 4. Absolute errors in the numerical integration of example 3 
x Yi Radau IIA method [20, 26] Method (1.29) 

Y1 3.70353636647280 × 10-10 3.12638803734444 × 10-13 
Y2 3.70363018031838 × 10-10 3.12583292583213 × 10-13 5 
Y3 3.70344199751571 × 10-10 3.12638803734444 × 10-13 
Y1 4.98715513330694 × 10-11 4.27435864480685 × 10-14 
Y2 5.00358643407139 × 10-11 4.27435864480685 × 10-14 50 
Y3 4.97826224687969 × 10-11 4.21884749357559 × 10-14 
Y1 2.59459120854899 × 10-13 8.88178419700125 × 10-16 
Y2 2.37143638059933 × 10-13 5.99520433297585 × 10-15 150 
Y3 1.55916946020795 × 10-14 6.77236045021345 × 10-15 
Y1 4.30766533554561 × 10-13 7.10542735760101 × 10-15 
Y2 4.39759340054025 × 10-13 2.88657986402541 × 10-15 250 
Y3 8.70636895911048 × 10-13 4.44089209850063 × 10-15 
Y1 1.29318777908338 × 10-12 5.99520433297585 × 10-15 
Y2 9.13435993510348 × 10-14 8.93729534823251 × 10-15 500 
Y3 1.20203846876166 × 10-12 3.55271367880050 × 10-15 
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Figure 4. Graphical plots of example 3 using Radau IIA method [20,26] and SDRKC method: 
a) Solution curve of example 3 using Radau IIA method [20,26], with nfe =500, b) Solution 

curve of example 3 using method (1.29), with nfe =500 
 

 
We solve this problem in the range 0 ≤ x ≤ 1. The computed solutions are shown in 

Table 5, while the graphical plots are displayed in Figure 5. Though, only the first four 

components {y1,y2,y3,y4} are shown in the Table of values. 

Example 5: HIRES 

The High irradiance responses problem consists of a stiff system of 8 nonlinear 

ordinary differential equation which originates from plant physiology and describes how light 

is involved in morphogenesis. It explains the high irradiance responses of photo 

morphogenesis on the basis of phytochrome by means of a chemical reaction involving eight 

reactants in the form of initial value problem see [28,29]. 
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Table 5. Absolute errors in the numerical integration of example 5 
x Yi Radau IIA method [20, 26] Method (1.29) 

Y1 3.83760043742853 × 10-8 5.84532422465145 × 10-11 
Y2 2.90659031079721 × 10-8 5.86538248525947 × 10-11 
Y3 2.22044604925031 × 10-16 0 5 

Y4 0 1.11022302462516 × 10-16 
Y1 2.32388491339108 × 10-7 1.51528067870998 × 10-10 
Y2 5.72332533588238 × 10-8 3.82774117957396 × 10-10 
Y3 1.55431223447522 × 10-15 3.33066907387547 × 10-16 50 

Y4 1.11022302462516 × 10-16 4.44089209850063 × 10-16 
Y1 1.91869619220464 × 10-8 1.42258618079927 × 10-11 
Y2 1.09619847643572 × 10-8 3.52476554887904 × 10-11 
Y3 1.38777878078145 × 10-15 1.66533453693773 × 10-16 250 

Y4 7.77156117237610 × 10-16 2.22044604925031 × 10-16 
Y1 2.28890865933633 × 10-10 2.65111307337423 × 10-13 
Y2 1.86748006761241 × 10-10 4.33490943878637 × 10-13 
Y3 3.57353036051222 × 10-16 6.93889390390723 × 10-17 500 

Y4 4.44089209850063 × 10-16  
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Figure 5. Graphical plots of example 4 using Radau IIA method [20,26] and SDRKC method: 
a) Solution curve of example 4 using Radau IIA method [20,26], with nfe =500, b) Solution 

curve of example 4 using method (1.29), with nfe =500 
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We solve the problem in the interval [0, 1] and compare the graphical plots with the 

ODE code of Matlab in Figure 6. 
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Figure 6. Graphical plots of example 5 using SDRKCM and the ODE code of Matlab: a) 
Solution curve of example 5 using method (1.25), with nfe = 500, b) Solution curve of 

example 5 using method (1.29), with nfe = 500 
 

 

Concluding remarks 

 

In conclusion, the methods so derived in this paper so far have been to introduce a 

class of implicit second-derivative Runge-Kutta collocation methods suitable for the 

approximate numerical integration of systems, particularly stiff systems of ordinary 

differential equations. The derived methods proved an efficient way to find numerical 

solution to systems of initial value problems when the second derivative terms are cheap to 

evaluate. We present two new methods of orders four and six that are intended for accurate 

integration of stiff systems of equations. We have also compared the numerical solution 

obtained with the conventional Radau Runge-Kutta methods which are widely recognized to 

be among the most efficient methods for stiff systems [3, 20, 26]. The solution curves are also 

compared with the exact solutions graphically in Figures. 
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