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Abstract 

Self-Organizing Maps (SOM) is an excellent method of analyzing 

multidimensional data. The SOM based classification is attractive, due to its 

unsupervised learning and topology preserving properties. In this paper, the 

performance of the self-organizing methods is investigated in induction motor 

rotor fault detection and severity evaluation. The SOM is based on motor current 

signature analysis (MCSA). The agglomerative hierarchical algorithms using the 

Ward’s method is applied to automatically dividing the map into interesting 

interpretable groups of map units that correspond to clusters in the input data. The 

results obtained with this approach make it possible to detect a rotor bar fault just 

directly from the visualization results. The system is also able to estimate the 

extent of rotor faults. 
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Introduction 

 

The use of induction motors in today’s industry is extensive due to their simplicity of 

construction, robustness and high efficiency. In addition, the progress in power electronics, 

control circuits and automatic have contributed to an increasing use of induction motors in the 

applications at variable speed. Whatever its use, the induction motors can be the seat of an 

important variety of failures. 

Common failures occurring in induction motors can be classified as follows: Internal 

motor faults (short circuit of motor leads, inter-turn short circuits, ground faults, broken rotor 

bar, broken end-ring, bearing failures), and external motor faults (phase failure, asymmetry of 

main supply,…). In certain cases, the failures can be due to the whole drive (gearbox fault, 

shaft misalignment,…). These incipient faults, or gradual deterioration, can lead to motor 

failure if left undetected. Early fault detection allows to minimize downtime and to schedule 

adequate maintenance action. 

Many researchers have focused their attention on incipient fault detection and 

preventive maintenance in recent years. Generally, two methods (invasive and non-invasive) 

for machine fault detection are distinguished. The non-invasive methods received a 

considerable attention because they are based on easily accessible and inexpensive 

measurements to diagnose the machine conditions without disintegrating the machine 

structure. 

Recently, Artificial Intelligence (AI) techniques have been proposed for the non-

invasive machine fault detection [1]. These AI-based techniques include expert systems, 

neural network, fuzzy logic and pattern recognition. Employs these techniques provides 

significant possibilities to overcome the limits of the traditional methods. 

In this paper, we present the clustering of the Self-Organizing Maps (SOM) based 

tools for motor rotor faults detection and severity evaluation. SOM is trained and tested using 

experimental results on a real induction machine. 

  

Broken rotor bar motor current signature 

Generally, the diagnosis of induction motors focuses on the spectral analysis of the 

various temporal sizes of the induction machine (stator currents, magnetic fields, frame 

vibrations, rotational speed,…) to extract the faults indicators. In general, stator currents and 



 

Leonardo Journal of Sciences 

ISSN 1583-0233 

 Issue 15, July-December 2009 

p. 1-14 
 

3 

voltages are preferred because they allow for the realization of non-invasive diagnostic 

systems. Motor Current Signature Analysis (MCSA) is the most widely used method. Thus, 

the current signature that is indicative of a broken rotor bars are the amplitude of the 

frequency components (1±2ks)fs.(Figure 1) and (k/p(1-s)±(1+2λ)s)fs where s is the slip and fs 

is the supply frequency [2]. 
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Figure 1. Experimental healthy (---) and faulty (two broken rotor bars) stator current 

spectrum around fundamental 
 

Clustering 

Clustering is the unsupervised classification of objects into different groups. The 

objective of the clustering is to divide a set of data vectors into groups (or clusters) so that the 

degree of similarity between two vectors is maximal if they belong to the same group and 

minimal otherwise. Applied to the diagnosis of the asynchronous machine, classification must 

be able to distinguish the different operating conditions, with and without fault. 

 

Hierarchical clustering 

There are two major methods of clustering, hierarchical clustering and partative 

clustering. Hierarchical algorithms find successive clusters using previously established 

clusters. Hierarchical algorithms can be agglomerative ("bottom-up") or divisive ("top-down") 

to build a hierarchical clustering tree (dendrogram), which can be cut at any level to obtain a 

desired number of clusters. Agglomerative techniques are more commonly used, and this is 

the method considered in this paper. 
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Agglomerative algorithms begin with each element as a separate cluster and merge 

them into successively larger clusters. At each step, it seeks to minimize distances within and 

maximize distances between clusters. 

In general, hierarchical clustering uses the Ward’s criterion [3]. Then, the union of 

every possible cluster pair (Ci et Cj) reduce the within-cluster distance by: 

ji
ji

ji
ji gg

)nn(n

nn
)C,C(d −

+
=  

(1) 

where ni is the number of samples in cluster Ci , . is the Euclidean norm and gi is the centre of 

the cluster i. 

 

Self-Organizing Map (SOM) 

The Self-Organizing Map (also known as Kohonen map) is an unsupervised artificial 

neural network which is a powerful method for clustering and visualization of high-

dimensional data [4]. 

The SOM algorithm implements a nonlinear topology preserving mapping from a 

high-dimensional input data space onto a low dimension discrete space (usually 1D,2D or 

3D), called the topological map. 

A map consists of m neurons (or units) located on a regular low dimensional grid, 

usually a two-dimensional rectangular or hexagonal grid, that defines their neighbourhood 

relationships. Each neuron C is represented by a weight vector Wc = [w1Λwd] where d is the 

dimension of the input vector [4]. 

 

Training of the SOM 

During training procedure, the weight vectors are adapted in such a way that close 

observations in the input space would activate two close neurons of the SOM [5]. 

The SOM is trained iteratively. At each training step, a sample input data vectors X is 

randomly presented from the training data sets, and the distance between the data and all the 

weight vectors of the SOM is calculated. The neuron whose weight vector is closet to the 

input vector is called the best-matching unit, often denoted bmu: 
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where wbmu is the best-matching unit weight vector. 

After finding the bmu, the weight vectors of the SOM are updated. The weight vectors 

of the bmu and its topological neighbours are moved closer to the input data vector. The 

weight-updating rule of the unit i is: 
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where τ is time, ε(τ)  is a learning rate and hbmu(i,τ) is defined as the neighbourhood kernel 

function around the bmu. Usually, ε(τ) is a decreasing function of time and should be between 

0 and 1. The Gaussian neighbourhood function is chosen: 
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where σ (τ) is the neighborhood radius [6]: 
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σi and σf  are the initial and final neighbourhood radius, T is the training length, rk ∈ ℜ2 and rj 

∈ ℜ2 are position of neurons k et j on the map. 

 

Labelling of the SOM 

After the training phase, it is possible to use the SOM to construct a classifier in which 

each neuron represents one class type. The classifier can then assign to each data vectors the 

corresponding bmu cluster.  

However, training of the self-organizing map is totally unsupervised. Therefore, it is 

not known what kind of data each of the obtained units represents.  

If labelled data are available, this information can be used to assign each neuron a 

label. The SOM is labelled based on votes between the labels according input data vectors and 
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only uses the one which is most frequent. Finally, class label of each original data vector is 

the label of the corresponding bmu [6]. 

 

Clustering of the SOM 

When not enough labelled data is available, the previous approach did not work at all. 

Then, to facilitate analysis of the map and the data, similar units need to be grouped to reduce 

the number of clusters. This is due to the topological ordering of the unit maps. Several 

methods [7, 8] are often used to perform this task. We have chosen to apply agglomerative 

hierarchical algorithms using the Ward’s method to cluster our maps. 

The clustered map can then be labelled. The primary benefit of this approach is to use 

more labelled data to assign each cluster a label and facilitate the analysis of revealed groups. 

 

 

Experimental Setup 

 

The characteristics of the three phase induction motor used in our experiment are 

5.5.KW 220/380.V 20.6/11.9.A 50Hz 2875.rpm. The needed load of the induction motor was 

established by connecting the test motor to an eddy current brake via a flexible coupling 

(Figure 2). 

In order to allow tests to be performed at different load levels, the brake DC supply 

current is controllable. A MATLAB Application Program Interface (API) is built to allow The 

ARCOM A/D PCI card to communicate directly with MATLAB. 

 
Figure 2. View of the experimental setup 
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A current Hall Effect sensor was placed in one of the line current cables and the 

sampling rate is 4 kHz. For our experimentations, the motor was tested with the healthy rotor 

and a faulty rotor with one and two broken bars for three different load conditions 

(respectively 50%, 75% and 100% of the full load). The bars were broken by drilling holes 

through them. 

 

SOM for induction motor fault diagnosis 

The collected data from experiment consist of 180 samples (60 representatives from 

each fault case and from the healthy case) and each data vector is labelled with the class it 

belongs. For the detection of rotor bar faults of an induction motor, 14 parameters that seemed 

to be the best indicators of the faults were taken in consideration: the amplitude of 10 

frequency components centred on the fundamental and 4 components around 5th harmonic. 

Then, the database size is 180 × 14 data vectors, two thirds of them were used to train the 

SOM. The rest are left for testing the network’s performance. 

As the amplitude of the parameters is in different scales, the normalization process is 

important so that all variables will be equally important on the training result. Normalization 

of the variance of vector components to unity, and its mean to zero is employed in this paper. 

A two-dimensional SOM of 55 neurons (11 by 5), organized in a hexagonal 

neighbourhood lattice, was trained using a SOM toolbox implemented in a free software 

Matlab-Package1 SOM_PAK  and developed in the Helsinki University of Technology. 

 

Visualization of the SOM 

The first step in the analysis of the map is visual inspection. In the following, the basic 

visualization of the SOM is introduced. 

The Unified distance matrix (U-matrix) shown in Figure 3(a) is useful for detection of 

cluster borders and especially suitable for estimation of inter cluster distances. The U-matrix 

shows distances between neighbouring map units using grey levels. Dark gray represents long 

distances and light grey short ones. It is easy to see that the map unit in the top right corner is 

a very clear cluster. 

The SOM do not utilise class information during the training phase. Class labels can 

be displayed an empty grid as a post-process after the completion of training. Figure 3(b) 

                                                 
1 Available in http://www.cis.hut.fi/projects/somtoolbox/ 
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clearly identify the label associated with each map unit (N= healthy rotor, D=faulty rotor with 

one broken bar and S= faulty rotor with two broken bars). From the labels it can be seen that 

unlabeled units indicate cluster borders and the map unit in the top right corner corresponds to 

the normal operating condition. The two other operating conditions form the other cluster. 

The U-matrix shows no clear separation between them, but from the labels it seems that they 

correspond to two sub clusters. 

Figure 4 plot shows the projection of both the training data set and the map grid. A 

principle component projection is made for the data, and applied to the map. Neighbouring 

map units are joining with lines to show the SOM topology. Labels associated with map units 

are also shown. From this figure one can see that the projection confirms the existence of two 

different clusters (Healthy and faulty rotor). 

Also, visualization of the SOM shows that it’s impossible to isolate clearly the 

classification boundary in the faulty rotor case. However, increased of faulty level can be seen 

from the left bottom corner to right top corner of the Kohonen map. For further investigation, 

the map needs to be partitioned. 
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Figure 3. Visualization of the SOM: (a) U-matrix and (b) labelled map (N= healthy rotor, 

D=faulty rotor with one broken bar and S= faulty rotor with two broken bars). 
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Figure 4. The projection of both the training data set and the map grid ( •- healthy rotor, 

 - faulty rotor with one broken bar and ♦- faulty rotor with two broken bars). 
 

The agglomerative hierarchical algorithms using the Ward’s method is applied to 

cluster our maps. Figure 5(a) shows the dendrogram resulting of the clustering procedure. 

Hierarchical clustering tree seems to indicate that there are three clusters on the map (the 

dendrogram is cut where there is a large distance between two merged clusters). 
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Figure 5. (a) Dendrogram of the hierarchical algorithms 
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We can see in Figure 5(b) the final map and the clustering obtained. The analysis of 

each cluster is based on the labelled map: 

 The region 1 corresponds to the healthy motor, 

 The region 2 corresponds to the faulty rotor with one broken bar, 

 The region 3 corresponds to the faulty rotor with two broken bars. 
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Figure 5. (b) Clustering resulting of the hierarchical algorithms 

 

Classification performance  

In order to use the labelled map as an automatic classification tool for a data set. The 

main idea is to find, for each data sample, the best matching unit from the map. Then, the 

class label of that unit is given to the sample [5]. Clustering accuracy can be evaluated as 

fraction of correctly classified input samples. The classification performances of the SOM 

using the training and testing data sets are summarized in Tables 1 and 2, respectively. The 

figures in tables 1 and 2 outlined the number of times each map unit was the bmu.  

The results indicate that the classification performance for the SOM is: 

 The tests carried out with a healthy normal condition activate almost only class number 

1. We can notice that the SOM has 96.66% accuracy for the data with healthy normal 

condition. 
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 Broken rotor bars are always distinguished from the healthy situation. Only 0.8% of all 

samples with rotor faults activate class number 1. 

There are difficulties in distinguishing one broken rotor bar from two broken operation. 

However, in total, over 80% of all samples are correctly classified in all rotor fault situations. 

 

Table 1. Classification performance of the SOM using training data set 
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 Activation of class 
number 1 (%) 

Activation of class 
number 2 (%) 

Activation of class 
number 3 (%) 

Healthy rotor 9 5 0 
Rotor with one 

broken bars 0 75 25 

Rotor with two 
broken bars 0 30 70 
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Table 2. Classification performance of the SOM using test data set 
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 Activation of class 

number 1 (%) 
Activation of class 

number 2 (%) 
Activation of class 

number 3 (%) 
Healthy rotor 100 0 0 

Rotor with one 
broken bars 4.3 78.3 17.4 

Rotor with two 
broken bars 0 10 90 

 

 

Conclusions 

 

In this paper, we have presented induction motor rotor fault detection and severity 

evaluation using Self Organising Maps (SOM). The SOM were trained and tested using real 

measurement data from stator currents signals. This study shows the visualization abilities of 

Self-Organizing Maps to classify the type of motor faults. 
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We have shown that the clustered SOM obtained by agglomerative hierarchical 

algorithms using the Ward’s method give interesting groups of map units and facilitate easy 

visualization and interpretation of motor faults. 

The method used in this paper offers interesting possibilities to analysis the motor 

condition (with and without fault). The results obtained have proved the efficiency of SOMs 

for induction motor diagnosis. 
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